• Title/Summary/Keyword: global warming potential

Search Result 312, Processing Time 0.023 seconds

A Study for Continue and Decline of Abies koreana Forest using Species Distribution Model - Focused in Mt. Baekwun Gwangyang-si, Jeollanam-do - (종 분포 모형을 이용한 구상나무림의 지속 및 쇠퇴에 관한 연구 - 전라남도 광양시 백운산을 중심으로 -)

  • Cho, Seon-Hee;Park, Jong-young;Park, Jeong-Ho;Lee, Yang-Geun;Mun, Lee-man;Kang, Sang-Ho;Kim, Gwang-Hyun;Yun, Jong-Guk
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.3
    • /
    • pp.360-367
    • /
    • 2015
  • The present study investigated the habitats of Korean fir trees (Abies koreana E. H. Wilson) on Mt. Baekwun (Baekwun-san), determined the current distribution, quantified the contribution of biological and non-biological environmental factors affecting the distribution, derived actual and potential habitats, presented a plan for the establishment of protected areas, applied RCP 8.5 climate change scenario to analyze the effects of climate change on the future distribution of Korean fir trees, and predicted future potential habitats. According to the results of the study, 3,325 Korean fir trees (DBH >= 2.5 cm) inhabited Mt. Baekwun, and their distribution area was approximately 150 ha. Populations of Korean fir trees were confirmed to exist at an altitude of 900 m above sea level and were distributed up to 1,200 m. Based on potential distribution, areas appropriate for habitation by Korean fir trees were analyzed to be 450 ha, three times the current distribution area, with a focus on Sang Peak (Sang-bong), Eokbul Peak (Eokbul-bong), Ddari Peak (Ddari-bong), and Dosol Peak (Dosol-bong). The forest stands near Sang Peak, the main peak, were evaluated as those with the most appropriate potential for the habitation of Korean fir trees, and populations of the trees tended to prefer the northern slope rather than the southern slope. When climate change scenario RCP 8.5 was applied and future potential distribution was analyzed, the habitats were expected to decrease in area to 20 ha by 2050, with a focus on Sang Peak, and areas appropriate for habitation were predicted not to exist by 2080. Judging from such results, as global warming accelerates, the habitats of Korean fir trees are clearly expected to move from lowlands to highlands.

Power Enhance Effect on the Hybrid Cell Based on Direct Current Nanogenerator and an Organic Photovoltaic Device

  • Yun, Gyu-Cheol;Sin, Gyeong-Sik;Lee, Geun-Yeong;Lee, Ju-Hyeok;Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.298-298
    • /
    • 2013
  • Finding renewable and clean energy resources is essential research to solve global warming and depletion of fossil fuels in modern society. Recently, complex harvesting of energy from multiple sources is available in our living environments using a single device has become highly desirable, representing a new trend in energy technologies. We report that when simultaneously driving the fusion and composite cells of two or more types, it is possible to make an affect the other cells to obtain a greater synergistic effect. To understand the coupling effect of photovoltaic and piezoelectric device, we fabricate the serially integrated hybrid cell (s-HC) based on organic solar cell (OSC) and piezoelectric nanogenerator (PNG). The size of increased voltage peaks when OSC and PNG are working on is larger than the case when only PNG is working. This voltage difference is the Voc change of OSC, not the voltage change of PNG and current density difference between these two cases is manifested more clearly. When the OSC and PNG are working in s-HC at the same time, piezoelectric potential (VPNG) is generated in ZnO and theoretical total voltage is sum of voltage of an OSC (VOSC) and VPNG. However, electrons from OSC are influenced by piezoelectric potential in ZnO and current loss of OSC in whole circuit decreases. As a result, VOSC increases temporarily. Current shows the similar behavior. PNG acts a resistance in the whole circuit and current loss occurs when the electrons from OSC pass through the PNG. But piezoelectric potential recover current loss and decrease the resistance of PNG. Our PNG can maintain piezoelectric potential when the strain is held owing to the LDH layer while general PNG cannot maintain piezoelectric potential. During the section that strain is held, voltage enhancement effect is maintained and same effect appeared even turn off the light. Actually at this time, electrons in ZnO nanosheets move to LDH and trapped by the positive charges in this layer. After this strain is held, piezoelectric potential of ZnO nanosheets is disappeared but potential difference which is developed by negative charge dominant LDH layer is remained. This potential acts similar role like piezoelectric potential in ZnO. Electrons from the OSC also are influenced by this potential and the more current flows.

  • PDF

Onset Date of Forest Canopy Detected from MODIS Leaf Area Index

  • Kim, So-Hee;Kang, Sin-Kyu;Lim, Jong-Hwan
    • Journal of Ecology and Environment
    • /
    • v.31 no.2
    • /
    • pp.153-159
    • /
    • 2008
  • The timing of the canopy phenology onset (CPO hereafter) indicates the initiation of the growing season, with rapid increases in exchange rates of carbon dioxide and water vapor between vegetation and atmosphere. The CPO is regarded as a potential indicator of ecosystem responses to global warming, but the CPO shows considerable spatial variation depending on the species composition and local temperature regime. at a given geographic location. In this study, we evaluated the utility of satellite observation data for detection of the timing of the CPO. Leaf area indices (LAI) obtained from the Moderate Resolution Imaging Spectrora-diometer (MODIS) were utilized to detect and map the onset dates from 2001 to 2006. The reliability of MODIS-based onset dates was evaluated with ground measured cherry blossom flowering data from national weather stations. The MODIS onset dates preceded the observed flowering dates by 8 days and were linearly related with a correlation coefficient of 0.58 (p < 0.05). In spite of the coarse spatial (1 km) and temporal (8 days) resolutions of MODIS LAI, the MODIS-based onset dates showed reasonable ability to predict flowering dates.

Eco-Friendly Mechanical Design of Touch-Screen Monitor Stand through Life-Cycle Assessment(LCA) (전과정평가(LCA)에 기반한 터치스크린 모니터 스탠드의 친환경적 기구설계)

  • Yi, Hwa-Cho;Jang, Woon-Geun;Han, Hoon;Jo, Young-Rae;Jeon, Chan-gon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.4
    • /
    • pp.117-124
    • /
    • 2012
  • Recent years, many industries acknowledge that environmental substantiality of products must be an essential role and it is one of the major importances for industries to consider the environmental impacts of products at the early stages of product development. This study investigated eco-design parameters and $CO_2-eq$. emissions in each stage of raw material acquisition, manufacturing, transportation, use and disuse in life cycle of touch monitor stand based on Eco-Design. In this study, to fulfill of Eco-Design, the environmental impact assessment of through LCA(Life cycle assessment) was carried out with benchmarking monitor stand and we suggested the direction of new design of touch monitor stand mechanism based on eco-friendly considerations. New design based on LCT(Life Cycle Thinking) showed that the following eco-friendly considerations at the early stage of design to be helpful to reduce GWP(Global Warming Potential) [kg $CO_2-eq$.] in new monitor stand development and it is necessary for Eco-Design process of the product.

Assessment of Landfill Gas Generation - A Case Study of Cheongju Megalo Landfill (매립지 가스 발생량 평가 - 청주권 광역생활폐기물 매립장 사례연구)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.5
    • /
    • pp.321-330
    • /
    • 2008
  • Methane is a potent greenhouse gas and methane emissions from landfills have been linked to global warming. In this study, LandGEM (Landfill Gas Emission Model) was applied to predict landfill gas quantity over time, and then this result was compared with the data surveyed on the site, Cheongju Megalo Landfill. LandGEM allows the input of site-specific values for methane generation rate (k) and potential methane generation capacity $L_o$, but in this study, k value of 0.05/yr and $L_o$ value of $170m^3/Mg$ were considered to be most appropriate for reflecting non-arid temperate region conventional landfilling, Cheongju Megalo Landfill. High discrepancies between the surveyed data and the predicted data about landfill gas seems to be derived from insufficient compaction of daily soil-cover, inefficient recovery of landfill gas and banning of direct landfilling of food garbage waste in 2005. This study can be used for dissemination of information and increasing awareness about the benefits of recovering and utilizing LFG (landfill gas) and mitigating greenhouse gas emissions.

Investigation of the Supercritical Fluids as an Insulating Medium for High Speed Switching

  • Shon, Chae-Hwa;Song, Ki-Dong;Oh, Yeon-Ho;Oh, Ho-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1783-1786
    • /
    • 2016
  • The paper investigates the insulation properties of the supercritical $CO_2$ ($SCCO_2$) fluid as an insulating medium for electrical apparatuses. The insulating material is crucial for electrical apparatuses and $SF_6$ gas has been widely used for high power electrical apparatuses. There have been many research efforts to develop substituents for $SF_6$ gas because of high global warming potential. We obtained above 350 kV/mm insulation strength with 12.0 MPa $SCCO_2$. The positive and negative IEC standard pulses are applied between two 10 mm diameter spherical electrodes. The insulation strength of $SCCO_2$ is at least 2.5 times higher than that of $CO_2$ gas at 6.0MPa. The insulation strength of $SCCO_2$ fluid is about 10 times higher than that of $SF_6$ at 0.5MPa which is the ordinary operating pressure of electrical switchgears. Using the result, we expect that the time for switching and dielectric recovery could be reduced using $SCCO_2$ fluid as an insulating medium.

An Experimental Study of N2O Concentration Profiles in Planner Premixed Flame (평면예혼합화염중의 N2O 농도변화에 관한 실험연구)

  • An, Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.267-271
    • /
    • 2009
  • The Marine Environment Protection Committee(MEPC) which is the IMO's specialized committee on marine pollution related matters deals with GHG related issues to discuss and compile possible approaches on technical, operational and market based measures to address GHG emissions from ships. The nitrous oxide($N_2O$) which remains generally in the atmosphere for around 114 years is one of the green house gases. The global warming potential of $N_2O$ is 310 times than $CO_2$ in the given period 100 years. It seems that the $N_2O$ formation is influenced by the nitrogen compound contained in the fuel which is named as "Fuel N" during the combustion process or the NOx, SOx and $H_2O$ through the emission gases before exhausted into the atmosphere. This paper has carried out an experimental study of the $N_2O$ concentration profiles by the change of $NH_3$ flows in the planner premixed combustion with using $C_3H_8$ and air.

Dyeing Properties of Acid and Reactive Dye for Super Soft Angora / PET, Nylon Blended Fabric (앙고라 섬유소재 / PET, Nylon 교직물의 염착 특성 : 산성염료와 반응성염료의 적용특성)

  • Kim, Young-Sung;Lee, Seok-Jang;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.22 no.4
    • /
    • pp.332-340
    • /
    • 2010
  • Nowadays natural textile materials should cope with the global warming. Soft, thin and light angora fibers which have two components. One is spiky hair and the other is soft hair. The spiky hairs have a disadvantage of pilling out. The soft hairs have promising properties comparable to cashmere goat hairs, which is cheap compared to very expensive cashmere goat hairs. In this study, we investigated the dyeing properties of angora/PET, Nylon blend fabrics to acid dyes and reactive dyes including various series of acid dyes and reactive dyes for the dyeing of the blended super soft angora fabrics and their potential for deep shade dyeing effects. Our focus is to get a relation between various kind of blend and their dyeability.

A Study on the Fluid H in Automotive Air Conditioning System as an Alternative Refrigerant (자동차 공조용 대체 냉매로서의 H냉매에 대한 연구)

  • Choi, Jeong-Won;Nam, Soo-Byeong;Bang, Scott
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.170-176
    • /
    • 2007
  • It is time to prepare the phaseout of R134a, the current refrigerant, in automotive air conditioning system because the EC deadline has been coming with new platform vehicles in 2011 and all vehicles by 2017. Until now a high-pressure carbon dioxide($CO_2$) system is the leading replacement of R134a in European auto-makers but there is no firm agreement in the world automotive market. Recently three new fluids have been announced as the possibilities from Honeywell, DuPont and INEOS Fluor. The new alternative refrigerant should meet the requirements like non flammable, non toxic, no ozone depletion effect and low GWP(under 150 to meet EC regulation). The objectives of this paper are to review the fluid H from Honeywell, the more possible alternative refrigerant in 3 new fluids, compare the properties of R134a & fluid H and see the possibility as a replacement of R134a. In this experimental paper we ran and reviewed the cooling performance data in the bench system, the vehicle and the field test. We found the possibility of fluid H system to meet the R134a system performance with some hardware modifications but agreed that it is still needed to study about the long term safety, environmental effects, material compatibilities and so on.

A Study on Destruction Potential of Sulfur Hexafluoride (SF6) Using High Ionization Energy (고이온화에너지를 이용한 육불화황 (SF6) 분해가능성 연구)

  • Ryu, Jae-Yong;Kim, Jong-Bum;Choi, Chang-Yong;Lee, Sang-Joon;Kwak, Hee-Sung;Yun, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.446-453
    • /
    • 2012
  • Destruction and removal efficiency (DRE) of $SF_6$ was tested with varying degrees of ionization and initial concentrations of $SF_6$. The applied dose of ionization energy varied from 0 to 400 kGy. The initial concentration of $SF_6$ gas also varied from 1,000 ppm to 2,500 ppm. In order to assess the effect of a residence time on DRE (Destruction and Removal Efficiency, %), experiments were also conducted at different irradiation times of 3, 5, 10, 15, and 20 sec, respectively. The DRE of $SF_6$ increased with an increasing amount of dose and current. Regardless of initial concentration of $SF_6$, 90% level of DRE was achieved by applying over 10 mA of electrical current.