• Title/Summary/Keyword: global similarity

Search Result 243, Processing Time 0.027 seconds

Analysis of Similarity of Twitter Topic Categories among Regions

  • Yun, Hong-Won
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Twitter can spread and share all kinds of information such as facts, opinions, and ideas in real time. In this paper, we empirically compare and analyze the topic categories in Twitter with all top 100 users in each of geographic region. We mainly consider the relationships among regions and selected four regions: Global, Seoul, Tokyo, and Beijing. Each of the top 100 users in Twitter is classified into a specific category and then statistical analysis is conducted. Among eight topic categories, the "Arts" category is the largest and the second is "Life". The correlation between global and Seoul groups has the lowest value among the six pairs of relationships between regional groups, and this difference is statistically significant. We find that the Seoul, Tokyo, and Beijing regional Twitter groups, all in East Asia, have high topical similarity. Based on the correlation analysis, Seoul and Tokyo saliently show a sticky trend. The correlation coefficient presents very a strong positive correlation between Seoul and Tokyo. The correlation between the global group and the East Asian groups is relatively lower than that among the East Asian groups.

The Cultural Similarity Effects on the Industry of Medical Tourism (문화적 유사성이 의료관광산업에 미치는 영향에 관한 연구)

  • Zhang, Jun;Lee, Hoon-Young
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.1
    • /
    • pp.67-76
    • /
    • 2018
  • Purpose - With the worldwide aging problem and the development of globalization, customers prefer to seek affordable medical services with the higher quality overseas. This new trend has urged some destination countries to improve their services for the more competitive advantages over other countries. Literature research indicate that medical quality and cost may be the key factors influencing global patients' decisions. In the international environment, however, medical tourism destinations are selected due to cultural similarity between the hosting country and the customers' own country. The more similarity perceived between the two countries leads foreign patients to choose the considering country as the destination for medical tourism. However, little research has been conducted on this topic. Thus, we empirically investigate how cultural similarity influences Chinese medical customers' choice of the destinations. We also consider the factors related to medical competency and travel attribute which might affect customers' decisions along with some moderating roles of disease types. Research design, data, and methodology - We proposed a research model in order to confirm the relations among different variables of cultural similarity, medical competency, travel attractiveness, disease types, and destination choice. The questionnaire survey is processed in the more economically developed regions of China such as Beijing, Shanghai, and Jiangsu. Conditional logit regression is applied to analyze the data of 881. Results - Results indicate that cultural similarity is the important predictor of Chinese customers' decision to select a medical country. However, the effects of cultural similarity vary according to the disease types. We also find that medical competency and travel attractiveness influence their decisions with the moderating role of disease types. Conclusions - Cultural similarity is the important factor that influences Chinese potential medical tourists' decisions to select a destination. Marketing managers should consider the effects of cultural similarity when developing strategies for attracting Chinese medical tourists. Since medical competency and travel attractiveness are still the critical key elements for them to evaluate the destination countries, it is necessary to continuously improve medical service quality and facilities. The results also recommend that medical managers should sharpen their marketing strategies by segmenting Chinese potential customers in terms of disease types.

Efficient Use of MPEG-7 Edge Histogram Descriptor

  • Won, Chee-Sun;Park, Dong-Kwon;Park, Soo-Jun
    • ETRI Journal
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • MPEG-7 Visual Standard specifies a set of descriptors that can be used to measure similarity in images or video. Among them, the Edge Histogram Descriptor describes edge distribution with a histogram based on local edge distribution in an image. Since the Edge Histogram Descriptor recommended for the MPEG-7 standard represents only local edge distribution in the image, the matching performance for image retrieval may not be satisfactory. This paper proposes the use of global and semi-local edge histograms generated directly from the local histogram bins to increase the matching performance. Then, the global, semi-global, and local histograms of images are combined to measure the image similarity and are compared with the MPEG-7 descriptor of the local-only histogram. Since we exploit the absolute location of the edge in the image as well as its global composition, the proposed matching method can retrieve semantically similar images. Experiments on MPEG-7 test images show that the proposed method yields better retrieval performance by an amount of 0.04 in ANMRR, which shows a significant difference in visual inspection.

  • PDF

Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization

  • Tang, Songze;Zhou, Xuhuan;Zhou, Nan;Sun, Le;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1449-1461
    • /
    • 2019
  • Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch representation scheme in traditional learning-based methods. It improves the quality of synthesized sketches by penalizing the dissimilar training patches (thus have very small weights or are discarded). In addition, taking the redundancy of image patches into account, a global nonlocal similarity regularization is employed to restrain the generation of the noise and maintain primitive facial features during the synthesized process. More robust synthesized results can be obtained. Extensive experiments on the public databases validate the generality, effectiveness, and robustness of the proposed algorithm.

Similarity Analysis of Exports Value Added by Country and Implication for Korea's Global Value Added Chains

  • Cho, Jung-Hwan
    • Journal of Korea Trade
    • /
    • v.23 no.4
    • /
    • pp.103-114
    • /
    • 2019
  • Purpose - This paper investigates the structure of exports across countries in terms of value added. Exports value added is examined under two categories, domestic and overseas. Using a statistical classification method by distance based on these two value added categories, this paper estimates the similarity of exports value added across countries including Korea. Design/methodology - The model of study is to employ a generalized distance function and then derive the Manhattan and Euclidean distances. The paper also performs cluster analysis using the Partitioning Around Medoids (PAM) and hierarchical methods to classify the 44 sample countries considered in this study. Findings - Our main findings are as follows. The 44 countries can be classified under 5 groups by their domestic and overseas value added in exports. Korea has a sandwich global value chains (GVCs) position between Japan, China, and Taiwan in the East Asian region. Originality/value - Existing papers point out the double counting problem of trade statistics as the intermediate goods trade across borders increases. This paper addresses the double counting problem by using the World Input-Output Table. The paper shows the need to explore the similarity of value added in exports structure across countries and investigate the GVCs position and role of each country.

A Max-Flow-Based Similarity Measure for Spectral Clustering

  • Cao, Jiangzhong;Chen, Pei;Zheng, Yun;Dai, Qingyun
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.311-320
    • /
    • 2013
  • In most spectral clustering approaches, the Gaussian kernel-based similarity measure is used to construct the affinity matrix. However, such a similarity measure does not work well on a dataset with a nonlinear and elongated structure. In this paper, we present a new similarity measure to deal with the nonlinearity issue. The maximum flow between data points is computed as the new similarity, which can satisfy the requirement for similarity in the clustering method. Additionally, the new similarity carries the global and local relations between data. We apply it to spectral clustering and compare the proposed similarity measure with other state-of-the-art methods on both synthetic and real-world data. The experiment results show the superiority of the new similarity: 1) The max-flow-based similarity measure can significantly improve the performance of spectral clustering; 2) It is robust and not sensitive to the parameters.

A Study on the Performance of Similarity Indices and its Relationship with Link Prediction: a Two-State Random Network Case

  • Ahn, Min-Woo;Jung, Woo-Sung
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1589-1595
    • /
    • 2018
  • Similarity index measures the topological proximity of node pairs in a complex network. Numerous similarity indices have been defined and investigated, but the dependency of structure on the performance of similarity indices has not been sufficiently investigated. In this study, we investigated the relationship between the performance of similarity indices and structural properties of a network by employing a two-state random network. A node in a two-state network has binary types that are initially given, and a connection probability is determined from the state of the node pair. The performances of similarity indices are affected by the number of links and the ratio of intra-connections to inter-connections. Similarity indices have different characteristics depending on their type. Local indices perform well in small-size networks and do not depend on whether the structure is intra-dominant or inter-dominant. In contrast, global indices perform better in large-size networks, and some such indices do not perform well in an inter-dominant structure. We also found that link prediction performance and the performance of similarity are correlated in both model networks and empirical networks. This relationship implies that link prediction performance can be used as an approximation for the performance of the similarity index when information about node type is unavailable. This relationship may help to find the appropriate index for given networks.

Global Sequence Homology Detection Using Word Conservation Probability

  • Yang, Jae-Seong;Kim, Dae-Kyum;Kim, Jin-Ho;Kim, Sang-Uk
    • Interdisciplinary Bio Central
    • /
    • v.3 no.4
    • /
    • pp.14.1-14.9
    • /
    • 2011
  • Protein homology detection is an important issue in comparative genomics. Because of the exponential growth of sequence databases, fast and efficient homology detection tools are urgently needed. Currently, for homology detection, sequence comparison methods using local alignment such as BLAST are generally used as they give a reasonable measure for sequence similarity. However, these methods have drawbacks in offering overall sequence similarity, especially in dealing with eukaryotic genomes that often contain many insertions and duplications on sequences. Also these methods do not provide the explicit models for speciation, thus it is difficult to interpret their similarity measure into homology detection. Here, we present a novel method based on Word Conservation Score (WCS) to address the current limitations of homology detection. Instead of counting each amino acid, we adopted the concept of 'Word' to compare sequences. WCS measures overall sequence similarity by comparing word contents, which is much faster than BLAST comparisons. Furthermore, evolutionary distance between homologous sequences could be measured by WCS. Therefore, we expect that sequence comparison with WCS is useful for the multiple-species-comparisons of large genomes. In the performance comparisons on protein structural classifications, our method showed a considerable improvement over BLAST. Our method found bigger micro-syntenic blocks which consist of orthologs with conserved gene order. By testing on various datasets, we showed that WCS gives faster and better overall similarity measure compared to BLAST.

Link Prediction Algorithm for Signed Social Networks Based on Local and Global Tightness

  • Liu, Miao-Miao;Hu, Qing-Cui;Guo, Jing-Feng;Chen, Jing
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.213-226
    • /
    • 2021
  • Given that most of the link prediction algorithms for signed social networks can only complete sign prediction, a novel algorithm is proposed aiming to achieve both link prediction and sign prediction in signed networks. Based on the structural balance theory, the local link tightness and global link tightness are defined respectively by using the structural information of paths with the step size of 2 and 3 between the two nodes. Then the total similarity of the node pair can be obtained by combining them. Its absolute value measures the possibility of the two nodes to establish a link, and its sign is the sign prediction result of the predicted link. The effectiveness and correctness of the proposed algorithm are verified on six typical datasets. Comparison and analysis are also carried out with the classical prediction algorithms in signed networks such as CN-Predict, ICN-Predict, and PSNBS (prediction in signed networks based on balance and similarity) using the evaluation indexes like area under the curve (AUC), Precision, improved AUC', improved Accuracy', and so on. Results show that the proposed algorithm achieves good performance in both link prediction and sign prediction, and its accuracy is higher than other algorithms. Moreover, it can achieve a good balance between prediction accuracy and computational complexity.

An Inference Similarity-based Federated Learning Framework for Enhancing Collaborative Perception in Autonomous Driving

  • Zilong Jin;Chi Zhang;Lejun Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1223-1237
    • /
    • 2024
  • Autonomous vehicles use onboard sensors to sense the surrounding environment. In complex autonomous driving scenarios, the detection and recognition capabilities are constrained, which may result in serious accidents. An efficient way to enhance the detection and recognition capabilities is establishing collaborations with the neighbor vehicles. However, the collaborations introduce additional challenges in terms of the data heterogeneity, communication cost, and data privacy. In this paper, a novel personalized federated learning framework is proposed for addressing the challenges and enabling efficient collaborations in autonomous driving environment. For obtaining a global model, vehicles perform local training and transmit logits to a central unit instead of the entire model, and thus the communication cost is minimized, and the data privacy is protected. Then, the inference similarity is derived for capturing the characteristics of data heterogeneity. The vehicles are divided into clusters based on the inference similarity and a weighted aggregation is performed within a cluster. Finally, the vehicles download the corresponding aggregated global model and train a personalized model which is personalized for the cluster that has similar data distribution, so that accuracy is not affected by heterogeneous data. Experimental results demonstrate significant advantages of our proposed method in improving the efficiency of collaborative perception and reducing communication cost.