• Title/Summary/Keyword: global performance analysis

Search Result 1,368, Processing Time 0.033 seconds

Implementation of DTW-kNN-based Decision Support System for Discriminating Emerging Technologies (DTW-kNN 기반의 유망 기술 식별을 위한 의사결정 지원 시스템 구현 방안)

  • Jeong, Do-Heon;Park, Ju-Yeon
    • Journal of Industrial Convergence
    • /
    • v.20 no.8
    • /
    • pp.77-84
    • /
    • 2022
  • This study aims to present a method for implementing a decision support system that can be used for selecting emerging technologies by applying a machine learning-based automatic classification technique. To conduct the research, the architecture of the entire system was built and detailed research steps were conducted. First, emerging technology candidate items were selected and trend data was automatically generated using a big data system. After defining the conceptual model and pattern classification structure of technological development, an efficient machine learning method was presented through an automatic classification experiment. Finally, the analysis results of the system were interpreted and methods for utilization were derived. In a DTW-kNN-based classification experiment that combines the Dynamic Time Warping(DTW) method and the k-Nearest Neighbors(kNN) classification model proposed in this study, the identification performance was up to 87.7%, and particularly in the 'eventual' section where the trend highly fluctuates, the maximum performance difference was 39.4% points compared to the Euclidean Distance(ED) algorithm. In addition, through the analysis results presented by the system, it was confirmed that this decision support system can be effectively utilized in the process of automatically classifying and filtering by type with a large amount of trend data.

A Study of Deep Learning-based Personalized Recommendation Service for Solving Online Hotel Review and Rating Mismatch Problem (온라인 호텔 리뷰와 평점 불일치 문제 해결을 위한 딥러닝 기반 개인화 추천 서비스 연구)

  • Qinglong Li;Shibo Cui;Byunggyu Shin;Jaekyeong Kim
    • Information Systems Review
    • /
    • v.23 no.3
    • /
    • pp.51-75
    • /
    • 2021
  • Global e-commerce websites offer personalized recommendation services to gain sustainable competitiveness. Existing studies have offered personalized recommendation services using quantitative preferences such as ratings. However, offering personalized recommendation services using only quantitative data has raised the problem of decreasing recommendation performance. For example, a user gave a five-star rating but wrote a review that the user was unsatisfied with hotel service and cleanliness. In such cases, has problems where quantitative and qualitative preferences are inconsistent. Recently, a growing number of studies have considered review data simultaneously to improve the limitations of existing personalized recommendation service studies. Therefore, in this study, we identify review and rating mismatches and build a new user profile to offer personalized recommendation services. To this end, we use deep learning algorithms such as CNN, LSTM, CNN + LSTM, which have been widely used in sentiment analysis studies. And extract sentiment features from reviews and compare with quantitative preferences. To evaluate the performance of the proposed methodology in this study, we collect user preference information using real-world hotel data from the world's largest travel platform TripAdvisor. Experiments show that the proposed methodology in this study outperforms the existing other methodologies, using only existing quantitative preferences.

Domain Knowledge Based Approach for Design Optimization of Arch Dams Using Genetic Algorithms

  • Dongsu Kim;Sangik Lee;Jonghyuk Lee;Byung-hun Seo;Yejin Seo;Dongwoo Kim;Yerim Jo;Won Choi
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1321-1321
    • /
    • 2024
  • Concrete arch dams, unlike conventional concrete gravity dams, have thin arch-shaped cross sections and must be designed considering a three-dimensional shape. In particular, double-curvature arch dams, which have arch-shaped vertical and horizontal sections, require careful consideration during design due to their unique shape. Although stress analysis is complex, and various factors need to be considered during the design, these dams offer economic advantages as they require less material. Consequently, numerous double-curvature arch dams have been constructed worldwide, and ongoing research focuses on optimizing their shapes. In this study, an efficient optimization algorithm was developed for the shape optimization of concrete arch dams with double-curvature using genetic algorithms and improved population initializing technique. The developed technique utilized domain knowledge in the field of arch dams to generate an excellent initial population. To assess the relevance of domain knowledge, an investigation was conducted on the accumulated knowledge and empirical formulas from literature. Two pieces of domain knowledge can be gleaned from the iterative structural design experiences associated with arch dams. First, it concerns the thickness of the central cantilever of an arch dam. For minimum tensile stress, it is best to make the thickness as thin as possible at the dam crest and gradually become thicker as it goes down. The second aspect concerns the sliding stability of the arch dam, which depends on the central angle of the horizontal section. This angel is important for stability because the plane arch serves to transfer the hydraulic load from the reservoir to both abutments. Also, preliminary design formulas for arch dams from a manual written by the United States Bureau of Reclamation (USBR) were used. On the other hand, since domain knowledge is based on engineering experiences and data from existing dams, its usability should be verified by comparing it with the results of design optimization performed by classic genetic algorithms. To validate the performance of the optimization algorithm with the improved population initialization technique, a test site with an existing dam was selected, and algorithmic application tests were conducted. Stress analysis is performed for each design iteration, evaluating constraints and calculating fitness as the objective function. The results confirmed that the algorithm developed in this study exhibits superior performance in terms of average fitness and convergence rate compared to classic genetic algorithms.

Usability Evaluation of the Drone LiDAR Data for River Surveying (하천측량을 위한 드론라이다 데이터의 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.592-597
    • /
    • 2020
  • Currently, river survey data is mainly performed by acquiring longitudinal and cross-sectional data of rivers using total stations or the GNSS(Global Navigation Satellite System). There is not much research that addresses the use of LiDAR(Light Detection and Ranging)systems for surveying rivers. This study evaluates the applicability of using LiDAR data for surveying rivers The Ministry of Land, Infrastructure and Transport recently launched a drone-based river fluctuation survey. Pilot survey projects were conducted in major rivers nationwide. Studies related to river surveying were performed using the ground LiDAR(Light Detection And Ranging)system.Accuracy was ensured by extracting the linearity of the object and comparing it with the total station survey performance. Data on trees and other features were extracted to generate three-dimensional geospatial information for the point-cloud data on the ground.Deviations were 0.008~0.048m. and compared with the results of surveying GNSS and the use of drone LiDAR data. Drone LiDAR provided accurate three-dimensional spatial information on the entire target area. It was able to reduce the shaded area caused by the lack of surveying results of the target area. Analyses such as those of area and slope of the target sites are possible. Uses of drones may therefore be anticipated for terrain analyses in the future.

Analysis and Proposal of Communication System for Maritime HF Band Digital Data Exchange (해상 HF대역 디지털 데이터 교환을 위한 통신시스템 분석 및 제안)

  • Choi, Sung-Cheol;So, Ji-Eun;Park, Hyung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2249-2260
    • /
    • 2017
  • IMO (International Maritime Organization) has been providing GMDSS (Global Maritime Distress and Safety System) and mandating to install distress and safety systems according to SOLAS. Digital-HF(High-Frequency) coast station communication system maintains interoperability between ship and coast station and digital data exchange in maritime mobile service by digitizing existing analog base voice communication. In this paper, we analyze ITU-R M. 1798-1 established by ITU for digital HF communications and propose Advanced annex2 and new Annex 5 to improve the problems of the existing Annex 2 and Annex 4. The proposed OFDM protocol basically adopts ARQ (Automatic Retransmission Request) which retransmits when an error occurs in a half-duplex manner between an information transmitting side (ISS) and an information receiving side (IRS) and we propose a digital HF communication system and its operational concept which is more reliable and superior than the existing ITU-R M. 1798 by implementing technical development on implementation and performance improvement.

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.

Performance Analysis of Pressure-retarded Osmosis Power Using Biomimetic Aquaporin Membrane (생체모방형 아쿠아포린 분리막을 이용한 압력지연삼투 발전 성능분석)

  • Choi, Wook;Bae, Harim;Lee, Hyung-Keun;Lee, Jonghwi;Kim, Jong Hak;Park, Chul Ho
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.317-322
    • /
    • 2015
  • Salinity gradient power is a system which sustainably generates electricity for 24 hrs, if the system is constructed at a certain place where both seawater and river water are consistently pumped. Since power is critically determined by the water flux and the salt rejection, a membrane of water-semipermeable aquaporin protein in cell membranes was studied for pressure-retarded osmosis. NaCl was used as a salt, and $NaNO_3$ was used as a candidate to check the ion selectivity. The water flux of biomimetic aquaporin membranes was negligible at a concentration below 2M. Also, there is no remarkable dependence of water flux and ion selectivity on concentrations higher than 3M. Therefore, the biomimetic aquaporin membrane could not be applied into pressure-retarded osmosis; however, if a membrane could overcome the current limitations, the properties shown by natural cells could be accomplished.

Estimation of CO2 Net Atmospheric Flux in the Middle and Lower Nakdong River, and Influence Factors Analysis (낙동강 중하류에서 이산화탄소 순배출 플럭스 산정 및 영향인자 분석)

  • Lee, Eunju;Chung, Sewoong;Park, Hyungseok;Kim, Sungjin;Park, Daeyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.316-331
    • /
    • 2019
  • Carbon dioxide($CO_2$) emission from rivers to the atmosphere is a key component in the global carbon cycle. Most of the rivers are supersaturated with $CO_2$. At a global scale, the amount of $CO_2$ emission from rivers is reported to be five-fold greater than that from lakes and reservoirs, but relevant data are rare in Korea. The objectives of this study is to estimate the $CO_2$ net atmospheric flux(NAF) from the upstream of Gangjeong-Goryeong Weir(GGW), Dalseong Weir(DSW), Hapcheon-Changnyeong Weir(HCW), and Changnyeong-Haman Weir(CHW) located in Nakdong River South Korea) using field and laboratory experiments and to apply data mining techniques to develop parsimonious prediction models that can be used to estimate $CO_2$ NAF with physical and water quality variables that can be collected easily. As a result, the study sites were all heterotrophic systems that often released $CO_2$ to the atmosphere, except when the algal photosynthesis was active.The median $CO_2$ NAF was minimum $391.5mg-CO_2/m^2$ day at GGW and maximum $1472.7mg-CO_2/m^2$ day at DSW. The $CO_2$ NAF showed a negative correlation with pH and Chl-a since the overgrowth of the algae consumed $CO_2$ in the water and increased the pH. As the parsimonious multiple regression model and random forest model developed, this study showed an excellent performance with the $Adj.R^2$ value higher than 0.77 in all weirs. Thus, these methods can be used to estimate $CO_2$ NAF in the river even if there is no $pCO_2$ measurement data.

A Study on Backup PNT Service for Korean Maritime Using NDGNSS (NDGNSS 인프라를 활용한 국내 해상 백업 PNT 서비스 연구)

  • Han, Young-Hoon;Lee, Sang-Heon;Park, Sul-Gee;Fang, Tae-Hyun;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.42-48
    • /
    • 2019
  • The significance of PNT information in the fourth industrial revolution is viewed differently in relation to the past. Autonomous vehicles, autonomous vessels, smart grids, and national infrastructure require sustainable and reliable services in addition to their high precision service. Satellite navigation system, which is the most representative system for providing PNT information, receive signals from satellites outside the earth so signal reception power is low and signal structures for civilian use are open to the public. Therefore, it is vulnerable to intentional and unintentional interference or hacking. Satellite navigation systems, which can easily acquire high performance of PNT information at low cost, require alternatives due to its vulnerability to the hacking. This paper proposed R-Mode (Ranging Mode) technology that utilizes currently operated navigation and communication infrastructure in terms of Signals of OPportunity (SoOP). For this, the Nationwide Differential Global Navigation Satellite System (NDGNSS), which currently gives a service of Medium Frequency (MF) navigation signal broadcasting, was used to validate the feasibility of a backup infrastructure in domestic maritime areas through simulation analysis.

Accuracy Evaluation of Earthwork Volume Calculation According to Terrain Model Generation Method (지형모델 구축 방법에 따른 토공물량 산정의 정확도 평가)

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • Calculation of quantity at construction sites is a factor that has a great influence on construction costs, and it is important to calculate accurate values. In this study, topographic model was created by using drone photogrammetry and drone LiDAR to estimate earthwork volume. ortho image and DSM (Digital Surface Model) were constructed for the study area by drone photogrammetry, and DEM (Digital Elevation Model) of the target area was established using drone LiDAR. And through accuracy evaluation, accuracy of each method are 0.034m, 0.35m in horizontal direction, 0.054m, 0.25m in vertical direction. Through the research, the usability of drone photogrammetry and drone LiDAR for constructing geospatial information was presented. As a result of calculating the volume of the study site, the UAV photogrammetry showed a difference of 1528.1㎥ from the GNSS (Global Navigation Satellite System) survey performance, and the 3D Laser Scanner showed difference of 160.28㎥. The difference in the volume of earthwork is due to the difference in the topographic model, and the efficiency of volume calculation by drone LiDAR could be suggested. In the future, if additional research is conducted using GNSS surveying and drone LiDAR to establish topographic model in the forest area and evaluate its usability, the efficiency of terrain model construction using drone LiDAR can be suggested.