• Title/Summary/Keyword: global minimum

Search Result 597, Processing Time 0.022 seconds

Adult Physical Activity and Health Related Quality of Life : National Big Data Utilization (7th National Health and Nutrition Survey) (성인의 신체활동과 건강관련 삶의 질 : 국가빅데이터를 중심으로)

  • Kim, Seung-Ju;Jeon, Min-Ju
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.8
    • /
    • pp.455-465
    • /
    • 2020
  • The purpose of this study was to investigate the relationship between physical activity and health-related quality of life of adults using the 7th National Health and Nutrition Survey. The study was conducted with 11,211 adults, and the health-related quality of life was defined using the EuroQol group's EQ-5D and physical activity using GPAQ. Data analysis was performed using the SAS 9.4 program, the general characteristics and degree of physical activity of the subject, Chi-square for KEQ-5D index, and Logistic Regression Analysis for the relationship between physical activity and quality of life. As a result of the study, the general characteristics of the subjects were marital status, educational status, occupation, smoking, alcohol consumption, economic status, stress, chronic disease, chronic disease treatment, physical activity due to leisure and physical activity due to occupation, depending on gender. There was a difference (p<0.05). As for the quality of life related to physical activity and health, the quality of life was significantly lower by 37% in the 'minimum physical activity group' of occupational physical activity (p<0.05). The results of this study are expected to be provided as basic data for physical activity-related health policy establishment and physical activity programs.

Photosynthetic and respiratory responses of the surfgrass, Phyllospadix japonicus, to the rising water temperature (수온 상승에 따른 게바다말의 광합성 및 호흡률 변화)

  • Hyegwang Kim;Jong-Hyeob Kim;Seung Hyeon Kim;Zhaxi Suonan;Kun-Seop Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.352-362
    • /
    • 2022
  • Photosynthesis and respiration of seagrasses are mainly controlled by water temperature. In this study, the photosynthetic physiology and respiratory changes of the Asian surfgrass Phyllospadix japonicus, which is mainly distributed on the eastern and southern coasts of Korea, were investigated in response to changing water temperature (5, 10, 15, 20, 25, and 30℃) by conducting mesocosm experiments. Photosynthetic parameters (maximum photosynthetic rate, Pmax; compensation irradiance, Ic; and saturation irradiance, Ik) and respiration rate of surfgrass increased with rising water temperature, whereas photosynthetic efficiency (α) was fairly constant among the water temperature conditions. The Pmax and Ik dramatically decreased under the highest water temperature condition (30℃), whereas the Ic and respiration rate increased continuously with the increasing water temperature. Ratios of maximum photosynthetic rates to respiration rates (Pmax : R) were highest at 5℃ and declined markedly at higher temperatures with the lowest ratio at 30℃. The minimum requirement of Hsat (the daily period of irradiance-saturated photosynthesis) of P. japonicus was 2.5 hours at 5℃ and 10.6 hours at 30℃ for the positive carbon balance. Because longer Hsat was required for the positive carbon balance of P. japonicus under the increased water temperature, the rising water temperature should have negatively affected the growth, distribution, and survival of P. japonicus on the coast of Korea. Since the temperature in the temperate coastal waters is rising gradually due to global warming, the results of this study could provide insights into surfgrass responses to future severe sea warming and light attenuation.

An Economical Efficiency Analysis of Fostering Program on Leading Company in Sport Industry (스포츠산업 선도기업 지원사업의 경제성 분석)

  • Ahn, Byeong-Il;Choi, Gyu-Seong;Ko, Kyong-Jin
    • 한국체육학회지인문사회과학편
    • /
    • v.57 no.6
    • /
    • pp.123-134
    • /
    • 2018
  • The purpose of this study is to analyze the economic efficiency of the policy implemented by Ministry of Culture, Sports and Tourism on leading company in sport industry. The leading companies in sport industry are those who have a certain amount of sales in sport industry and the ones with potential to become global companies. Supporting areas include business advancement, overseas market development, and overseas PR marketing integration support. The research is performed by developing the equilibrium model composed of supply as well as demand and applying input-output analysis. The economic efficiency is estimated to in the form of changes in the sales of corporations and the ripple effect of the national economy. The results of the study are as follows. First, it is estimated that the sales growth rate of the company due to the implementation of the policy is from 3.74% to 5.19%. Second, the increase in sales reaches to a maximum of KRW 4,081 billion with a minimum of KRW 1,573 million, depending on the size of the company. Third, it is estimated that the production inducement effect for the national economy is from KRW 36 billion to KRW 93.4 billion. Fourth, the induced value added for the national economy is estimated to be at least KRW 11.3 billion, up to KRW 29.2 billion.

Psychometric Properties of the Korean Version of Self-Efficacy for HIV Disease Management Skills (한국어판 HIV 감염인의 건강관리 자기효능감 도구의 타당도와 신뢰도)

  • Kim, Gwang Suk;Kim, Layoung;Shim, Mi-So;Baek, Seoyoung;Kim, Namhee;Park, Min Kyung;Lee, Youngjin
    • Journal of Korean Academy of Nursing
    • /
    • v.53 no.3
    • /
    • pp.295-308
    • /
    • 2023
  • Purpose: This study evaluated the validity and reliability of Shively and colleagues' self-efficacy for HIV disease management skills (HIV-SE) among Korean participants. Methods: The original HIV-SE questionnaire, comprising 34 items, was translated into Korean using a translation and back-translation process. To enhance clarity and eliminate redundancy, the author and expert committee engaged in multiple discussions and integrated two items with similar meanings into a single item. Further, four HIV nurse experts tested content validity. Survey data were collected from 227 individuals diagnosed with HIV from five Korean hospitals. Construct validity was verified through confirmatory factor analysis. Criterion validity was evaluated using Pearson's correlation coefficients with the new general self-efficacy scale. Internal consistency reliability and test-retest were examined for reliability. Results: The Korean version of HIV-SE (K-HIV-SE) comprises 33 items across six domains: "managing depression/mood," "managing medications," "managing symptoms," "communicating with a healthcare provider," "getting support/help," and "managing fatigue." The fitness of the modified model was acceptable (minimum value of the discrepancy function/degree of freedom = 2.49, root mean square error of approximation = .08, goodness-of-fit index = .76, adjusted goodness-of-fit index = .71, Tucker-Lewis index = .84, and comparative fit index = .86). The internal consistency reliability (Cronbach's α = .91) and test-retest reliability (intraclass correlation coefficient = .73) were good. The criterion validity of the K-HIV-SE was .59 (p < .001). Conclusion: This study suggests that the K-HIV-SE is useful for efficiently assessing self-efficacy for HIV disease management.

Multi-Time Window Feature Extraction Technique for Anger Detection in Gait Data

  • Beom Kwon;Taegeun Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.41-51
    • /
    • 2023
  • In this paper, we propose a technique of multi-time window feature extraction for anger detection in gait data. In the previous gait-based emotion recognition methods, the pedestrian's stride, time taken for one stride, walking speed, and forward tilt angles of the neck and thorax are calculated. Then, minimum, mean, and maximum values are calculated for the entire interval to use them as features. However, each feature does not always change uniformly over the entire interval but sometimes changes locally. Therefore, we propose a multi-time window feature extraction technique that can extract both global and local features, from long-term to short-term. In addition, we also propose an ensemble model that consists of multiple classifiers. Each classifier is trained with features extracted from different multi-time windows. To verify the effectiveness of the proposed feature extraction technique and ensemble model, a public three-dimensional gait dataset was used. The simulation results demonstrate that the proposed ensemble model achieves the best performance compared to machine learning models trained with existing feature extraction techniques for four performance evaluation metrics.

Production of Digital Climate Maps with 1km resolution over Korean Peninsula using Statistical Downscaling Model (통계적 상세화 모형을 활용한 한반도 1km 농업용 전자기후도 제작)

  • Jina Hur;Jae-Pil Cho;Kyo-Moon Shim;Sera Jo;Yong-Seok Kim;Min-Gu Kang;Chan-Sung Oh;Seung-Beom Seo;Eung-Sup Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.404-414
    • /
    • 2023
  • In this study, digital climate maps with high-resolution (1km, daily) for the period of 1981 to 2020 were produced for the use as reference data within the procedures for statistical downscaling of climate change scenarios. Grid data for the six climate variables including maximum temperature, minimum temperature, precipitation, wind speed, relative humidity, solar radiation was created over Korean Peninsula using statistical downscaling model, so-called IGISRM (Improved GIS-based Regression Model), using global reanalysis data and in-situ observation. The digital climate data reflects topographical effects well in terms of representing general behaviors of observation. In terms of Correlation Coefficient, Slope of scatter plot, and Normalized Root Mean Square Error, temperature-related variables showed satisfactory performance while the other variables showed relatively lower reproducibility performance. These digital climate maps based on observation will be used to downscale future climate change scenario data as well as to get the information of gridded agricultural weather data over the whole Korean Peninsula including North Korea.

Introduction of a New Method for Total Organic Carbon and Total Nitrogen Stable Isotope Analysis of Dissolved Organic Matter in Aquatic Environments (수환경 내 용존성 유기물질의 총 유기탄소 및 총 질소 안정동위원소 신규 분석법 소개)

  • Si-yeong Park;Heeju Choi;Seoyeon Hong;Bo Ra Lim;Seoyeong Choi;Eun-Mi Kim;Yujeong Huh;Soohyung Lee;Min-Seob Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.339-347
    • /
    • 2023
  • Dissolved organic matter (DOM) is a key component in the biogeochemical cycling in freshwater ecosystem. However, it has been rarely explored, particularly complex river watershed dominated by natural and anthropogenic sources, such as various effluent facility and livestock. The current research developed a new analytical method for TOC/TN (Total Organic Carbon/Total Nitrogen) stable isotope ratio, and distinguish DOM source using stable isotope value (δ13C-DOC) and spectroscopic indices (fluorescence index [FI] and biological index [BIX]). The TOC/TN-IR/MS analytical system was optimized and precision and accuracy were secured using two international standards (IAEA-600 Caffein, IAEA-CH-6 Sucrose). As a result of controlling the instrumental conditions to enable TOC stable isotope analysis even in low-concentration environmental samples (<1 mgC L-1), the minimum detection limit was improved. The 12 potential DOM source were collected from watershed, which includes top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae) and effluent group (pig and cow livestock, agricultural land, urban, industry facility, swine facility and wastewater treatment facilities). As a result of comparing characteristics between 12 sources using spectroscopic indices and δ13C-DOC values, it were divided into four groups according to their characteristics as a respective DOM sources. The current study established the TOC/TN stable isotope analyses system for the first time in Korea, and found that spectroscopic indices and δ13C-DOC are very useful tool to trace the origin of organic matter in the aquatic environments through library database.

Selection of Evaluation Metrics for Grading Autonomous Driving Car Judgment Abilities Based on Driving Simulator (드라이빙 시뮬레이터 기반 자율주행차 판단능력 등급화를 위한 평가지표 선정)

  • Oh, Min Jong;Jin, Eun Ju;Han, Mi Seon;Park, Je Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.63-73
    • /
    • 2024
  • Autonomous vehicles at Levels 3 to 5, currently under global research and development, seek to replace the driver's perception, judgment, and control processes with various sensors integrated into the vehicle. This integration enables artificial intelligence to autonomously perform the majority of driving tasks. However, autonomous vehicles currently obtain temporary driving permits, allowing them to operate on roads if they meet minimum criteria for autonomous judgment abilities set by individual countries. When autonomous vehicles become more widespread in the future, it is anticipated that buyers may not have high confidence in the ability of these vehicles to avoid hazardous situations due to the limitations of temporary driving permits. In this study, we propose a method for grading the judgment abilities of autonomous vehicles based on a driving simulator experiment comparing and evaluating drivers' abilities to avoid hazardous situations. The goal is to derive evaluation criteria that allow for grading based on specific scenarios and to propose a framework for grading autonomous vehicles. Thirty adults (25 males and 5 females) participated in the driving simulator experiment. The analysis of the experimental results involved K-means cluster analysis and independent sample t-tests, confirming the possibility of classifying the judgment abilities of autonomous vehicles and the statistical significance of such classifications. Enhancing confidence in the risk-avoidance capabilities of autonomous vehicles in future hazardous situations could be a significant contribution of this research.

Actions to Expand the Use of Geospatial Data and Satellite Imagery for Improved Estimation of Carbon Sinks in the LULUCF Sector

  • Ji-Ae Jung;Yoonrang Cho;Sunmin Lee;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.203-217
    • /
    • 2024
  • The Land Use, Land-Use Change and Forestry (LULUCF) sector of the National Greenhouse Gas Inventory is crucial for obtaining data on carbon sinks, necessitating accurate estimations. This study analyzes cases of countries applying the LULUCF sector at the Tier 3 level to propose enhanced methodologies for carbon sink estimation. In nations like Japan and Western Europe, satellite spatial information such as SPOT, Landsat, and Light Detection and Ranging (LiDAR)is used alongside national statistical data to estimate LULUCF. However, in Korea, the lack of land use change data and the absence of integrated management by category, measurement is predominantly conducted at the Tier 1 level, except for certain forest areas. In this study, Space-borne LiDAR Global Ecosystem Dynamics Investigation (GEDI) was used to calculate forest canopy heights based on Relative Height 100 (RH100) in the cities of Icheon, Gwangju, and Yeoju in Gyeonggi Province, Korea. These canopy heights were compared with the 1:5,000 scale forest maps used for the National Inventory Report in Korea. The GEDI data showed a maximum canopy height of 29.44 meters (m) in Gwangju, contrasting with the forest type maps that reported heights up to 34 m in Gwangju and parts of Icheon, and a minimum of 2 m in Icheon. Additionally, this study utilized Ordinary Least Squares(OLS)regression analysis to compare GEDI RH100 data with forest stand heights at the eup-myeon-dong level using ArcGIS, revealing Standard Deviations (SDs)ranging from -1.4 to 2.5, indicating significant regional variability. Areas where forest stand heights were higher than GEDI measurements showed greater variability, whereas locations with lower tree heights from forest type maps demonstrated lower SDs. The discrepancies between GEDI and actual measurements suggest the potential for improving height estimations through the application of high-resolution remote sensing techniques. To enhance future assessments of forest biomass and carbon storage at the Tier 3 level, high-resolution, reliable data are essential. These findings underscore the urgent need for integrating high-resolution, spatially explicit LiDAR data to enhance the accuracy of carbon sink calculations in Korea.

Introduction and Evaluation of the Pusan National University/Rural Development Administration Global-Korea Ensemble Long-range Climate Forecast Data (PNU/RDA 전지구-한반도 앙상블 장기기후 예측자료 소개 및 평가)

  • Sera Jo;Joonlee Lee;Eung-Sup Kim;Joong-Bae Ahn;Jina Hur;Yongseok Kim;Kyo-Moon Shim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.3
    • /
    • pp.209-218
    • /
    • 2024
  • The National Institute of Agricultural Sciences (NAS) operates in-house long-range climate forecasting system to support the agricultural use of climate forecast data. This system, developed through collaborative research with Pusan National University, is based on the PNU/RDA Coupled General Circulation Model (CGCM) and includes the regional climate model WRF (Weather Research and Forecasting). It generates detailed climate forecast data for periods ranging from 1 to 6 months, covering 20 key variables such as daily maximum, minimum, and average temperatures, precipitation, and agricultural meteorological elements like solar radiation, soil moisture, and ground temperature-factors essential for agricultural forecasting. The data are provided at a daily temporal resolution with a spatial resolution of a 5km grid, which can be used in point form (interpolated) or averaged across administrative regions. The system's seasonal temperature and precipitation forecasts align closely with observed climatological data, accurately reflecting spatial and topographical influences, confirming its reliability. These long-range forecasts from NAS are expected to offer valuable insights for agricultural planning and decision-making. The detailed forecast data can be accessed through the Climate Change Assessment Division of NAS.