• 제목/요약/키워드: global carbon regulation

검색결과 39건 처리시간 0.026초

Corynebacterium glutamicum의 탄소대사 및 총체적 탄소대사 조절 (Carbon Metabolism and Its Global Regulation in Corynebacterium glutamicum)

  • 이정기
    • 한국미생물·생명공학회지
    • /
    • 제38권4호
    • /
    • pp.349-361
    • /
    • 2010
  • 본 총설에서는 아미노산의 공업적 생산균인 Corynebacterium glutamicum의 탄소 대사 및 이와 관련된 총체적 조절 메커니즘에 대한 최근의 연구를 정리하였다. C. glutamicum의 산업적 발효을 위한 기질로서 사용되는 당밀은 주로 sucrose, glucose, fructose로 이루어져 있으며, 이들 당은 phosphotransferase system을 통해서 수송된다. C. glutamicum의 탄소 대사 특징은 glucose가 다른 당이나 유기산 등과 함께 존재할 때, glucose와 이러한 탄소원 들을 동시에 대사한다. 그러나 glucose/glutamate 혹은 glucose/ethanol 등의 혼합물에서 는 탄소원의 순차적 이용으로 인해 나타나는 diauxic growth 현상을 나타내며, 이러한 carbon catabolite repression(CCR) 현상은 E. coli나 B. subtilis 등에서 알려진 것과는 다른 독특한 분자적 메커니즘과 조절 circuits을 가지고 있음이 밝혀지고 있다. C. glutamicum의 CRP homologue인 GlxR은 acetate 대사를 포함하여 glycolysis, gluconeogenesis 및 TCA cycle 등을 포함하는 중심탄소대사 조절 뿐만 아니라, 다양한 세포 기능의 조절에 관여하는 총체적 조절 단백질로서의 역할이 제시되고 있다. C. glutamicum의 adenylate cyclase(AC)는 막과 결합된 class IIIAC 로서, 막 단백질의 특성상 아직 규명되어 있지 않은 세포 외부의 환경 변화에 대응하여 세포 내의 cAMP합성 수준을 조절할 수 있는 sensor로 추정할 수 있다. 특히 C. glutamicum의 경우 배지내 glucose 를 비롯한 탄소원과 cAMP 농도와의 관련성이 E. coli에서 알려진 교과서적 지식과는 상반되게 변화하는 경향을 보이고 있어, cAMP signaling에 의한 세포 내 regulatory network 등은 향후 풀어야 할 의문으로 남아있다. 탄소대사 조절의 최상위에 존재하며 global 조절자인 GlxRcAMP 복합체 이외에도 차상위 전사조절 단백질로서 RamB, RamA, SugR 등이 존재하여 다양한 탄소대사를 조절한다. 최근 들어서는 새로운 탄소원으로서 대두되고 있는 biomass 관련 기질들을 이용할 수 있는 C. glutamucum 균주 구축을 통하여 이용 기질의 범위를 확대시키고자 하는 연구 및 탄소 대사와 관련하여 L-lysine의 발효 수율 혹은 생산성을 향상시키고자 하는 다양한 분자적 균주 육종 연구 등이 수행되고 있다.

Problems of Decarbonization of the Economy of Kazakhstan

  • Yessekina, Bakhyt K.
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제2권3호
    • /
    • pp.37-39
    • /
    • 2015
  • In this article we consider the modern trends of global warming, GHG pollutions and discussions of the obligations of developed and developing countries before the UN Global Climate Summit in Paris. The article considers decarbonization as a national strategy, including complex tools for the improvement of energy efficiency, reduction of CO2 and development of emissions trading systems. The author underlines that the Central Asian countries such as Kazakhstan and Turkmenistan, have the largest GHG potential in the region, and for this reason they should be within the framework of the UNFCCC and join the international process on development of the national decarbonization strategies.Thesemeasuresallowthese countries to join the global carbon trade marketing, international financial recourses, and significantly reduce CO2 pollutions in the region.

선박 연료배관용 St37.4 탄소강의 암모니아 농도에 따른 부식 특성 (Corrosion Characteristics of St37.4 Carbon Steel for Ship Fuel Pipe with Ammonia Concentration)

  • 이도빈;이승준
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.514-524
    • /
    • 2022
  • Carbon emissions from fuel consumption have been pointed by scientists as the cause of global warming. In particular, fossil fuels are known to emit more carbon when burned than other types of fuels. In this regard, International Maritime Organization has announced a regulation plan to reduce carbon dioxide emissions. Therefore, recently, Liquefied Natural Gas propulsion ships are responding to such carbon reduction regulation. However, from a long-term perspective, it is necessary to use carbon-free fuels such as hydrogen and ammonia. Nitrogen oxides might be generated during ammonia combustion. There is a possibility that incompletely burned ammonia is discharged. Therefore, rather than being used as a direct fuel, Ammonia is only used to reduce NOX such as urea solution in diesel vehicle Selective Catalyst Reduction. Currently, LPG vehicle fuel feed system studies have evaluated the durability of combustion injectors and fuel tanks in ammonia environment. However, few studies have been conducted to apply ammonia as a ship fuel. Therefore, this study aims to evaluate corrosion damage that might occur when ammonia is used as a propulsion fuel on ships.

도시 탄소데이터 통합관리를 위한 프로그램 설계 방안 및 UI 연구 (A study on the UI design and program development for integrated management of carbon data in city)

  • 박준형;김성식;김종우;최규태
    • 한국태양에너지학회 논문집
    • /
    • 제33권2호
    • /
    • pp.108-117
    • /
    • 2013
  • Studies on the regulation and measurement of greenhouse gases(GHGs) emissions have been carrying out for global wanning. In order to reduce greenhouse gas emissions, many countries have been promoting the Emissions Trading System and projects of the Joint Implementation(JI) and Clean Development Mechanism(CDM). These country's GHG emissions have been measured calculation criteria based on the Intergovernmental Panel on Climate Change(IPCC) Guidelines. In order to respond to GHGs regulation, in each country, it is planing to build a Low-Carbon City. The system has been developed for calculating GHGs emissions from companies and institutions in their respective countries. However, the system can monitor the GHGs per city, has not been developed. In this paper, it is studied to design the User Interface and to develop integrated monitoring program for Low-carbon city. This program will make possible monitoring and management, statistics, and reports written by using each data in units of cities.

수소전기차 사용소재의 수소취성 안전성에 관한 고찰 (A Study on the Safety of Hydrogen Embrittlement of Materials Used for Hydrogen Electric Vehicles)

  • 전현진;정원종;조성구;이호식;이현우;조성우;강일호;김남용;류호진
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.761-768
    • /
    • 2022
  • In the hope of realizing carbon neutrality, Korea has established the goal of expanding the supply of hydrogen electric vehicles through a roadmap to revitalize the hydrogen economy. A prerequisite for successful supply expansion is securing the safety of hydrogen electric vehicles. Certain parts, such as the hydrogen transport pipe and tank, in hydrogen electric vehicles are exposed to high-pressure hydrogen gas over long periods of time, so the hydrogen enters the grain boundary of material, resulting in a degradation of the parts referred to as hydrogen embrittlement. In addition, since the safety of parts utilizing hydrogen varies depending on the type of material used and its environmental characteristics, the necessity for the enactment of a hydrogen embrittlement regulation has emerged and is still being discussed as a Global Technical Regulation (GTR). In this paper, we analyze a hydrogen compatibility material evaluation method discussed in GTR and present a direction for the development of Korean-type hydrogen compatibility material evaluation methods.

A Study on the Impact of Slow Steaming on Containership Operations under the Carbon Intensity Indicator Regulation

  • Daesik Seo;Youngran Shin
    • 한국항해항만학회지
    • /
    • 제48권2호
    • /
    • pp.97-103
    • /
    • 2024
  • As there is growing concern about the environmental impact of greenhouse gas emissions from ships, the International Maritime Organization (IMO) has introduced several regulations targeting reductions in carbon dioxide emissions of 50% by 2050. This study pays particular attention to the carbon intensity indicator (CII) and investigates the impact of slow steaming, one of the short-term measures in the regulation, on containership operations. To this end, a dataset of 8 containerships with various ages and sizes was collected. Based on operation data in 2021, the CII ratings of the containerships were estimated in the business-as-usual scenario for the 2023-2030 period. Then, the speed reductions required to keep the minimum CII rating were calculated for individual containerships. Finally, working day losses resulting from the speed reductions were calculated. The findings in this study were threefold. First, it was found that containerships will undergo degradation in the CII rating every 3 or 4 years without slow steaming. Second, a speed reduction of 2 knots between 2023 and 2030 is required to keep the minimum CII rating. Finally, speed reductions result in the loss of as many as 6 or 7 working days per year.

Quantifying Climate Regulation of Terrestrial Ecosystems Using a Land-Atmosphere Interaction Model Over East Asia for the Last Half Century

  • Hong, Seungbum;Jang, Inyoung;Jeong, Heon-Mo
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제1권1호
    • /
    • pp.58-67
    • /
    • 2020
  • Terrestrial ecosystems influence climate change via their climate regulation function, which is manifested within the carbon, water, and energy circulation between the atmosphere and surface. However, it has been challenging to quantify the climate regulation of terrestrial ecosystems and identify its regional distribution, which provides useful information for establishing regional climate-mitigation plans as well as facilitates better understanding of the interactions between the climate and land processes. In this study, a land surface model (LSM) that represents the land-atmosphere interactions and plant phenological variations was introduced to assess the contributions of terrestrial ecosystems to atmospheric warming or cooling effects over East Asia over the last half century. Three main climate-regulating components were simulated: net radiation flux, carbon exchange, and moisture flux at the surface. Then, the contribution of each component to the atmospheric warming or cooling (negative or positive feedback to the atmosphere, respectively) was investigated. The results showed that the terrestrial ecosystem over the Siberian region has shown a relatively large increase in positive feedback due to the enhancement of biogeochemical processes, indicating an offset effect to delay global warming. Meanwhile, the Gobi Desert shows different regional variations: increase in positive feedback in its southern part but increase in negative one in its eastern part, which implies the eastward movements of desert areas. As such, even though the LSM has limitations, this model approach to quantify the climate regulation is useful to extract the relevant characteristics in its spatio-temporal variations.

제지산업의 탄소배출권 시장 대처방안 (Action Plans of Paper Industry Correspond to the Carbon Dioxide Emission Trading Market)

  • 성용주;김동섭;엄기증;이준우;김세빈;박관수
    • 펄프종이기술
    • /
    • 제44권1호
    • /
    • pp.43-51
    • /
    • 2012
  • Carbon dioxide emission trading market would play very important role in the global effort to cope with climate change. In KOREA, the energy consumption and geen house gas emission of various industry would be controlled by the low carbon-green growth law which was established at 2009. The paper industry as one of major industries in terms of energy consumption has been greatly required to prepare action plan for addressing this regulation and reduction of carbon dioxide emission. In this study, the current states of carbon dioxide emission trading market were analyzed in terms of practical responses of the paper industry. And the various action plans including CDM projects for paper industry were suggested.

저탄소 패러다임에 따른 구역전기사업자의 분산전원 최적 운영에 관한 연구 (The Optimal Operation of Distributed Generation Possessed by Community Energy System Considering Low-Carbon Paradigm)

  • 김성열;심헌;배인수;김진오
    • 전기학회논문지
    • /
    • 제58권8호
    • /
    • pp.1504-1511
    • /
    • 2009
  • By development of renewable energies and high-efficient facilities and deregulated electricity market, the operation cost of distributed generation(DG) becomes more competitive. The amount of distributed resource is considerably increasing in the distribution network consequently. Also, international environmental regulations of the leaking carbon become effective to keep pace with the global efforts for low-carbon paradigm. It contributes to spread out the business of DG. Therefore, the operator of DG is able to supply electric power to customers who are connected directly to DG as well as loads that are connected to entire network. In this situation, community energy system(CES) having DGs is recently a new participant in the energy market. DG's purchase price from the market is different from the DG's sales price to the market due to the transmission service charges and etc. Therefore, CES who owns DGs has to control the produced electric power per hourly period in order to maximize the profit. If there is no regulation for carbon emission(CE), the generators which get higher production than generation cost will hold a prominent position in a competitive price. However, considering the international environment regulation, CE newly will be an important element to decide the marginal cost of generators as well as the classified fuel unit cost and unit's efficiency. This paper will introduce the optimal operation of CES's DG connected to the distribution network considering CE. The purpose of optimization is to maximize the profit of CES and Particle Swarm Optimization (PSO) will be used to solve this problem. The optimal operation of DG represented in this paper is to be resource to CES and system operator for determining the decision making criteria.

Services of Algae to the Environment

  • Rai, Lal-Chand;Har Darshan Kumar;Frieder Helmut Mohn;Carl Johannas Soeder
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권2호
    • /
    • pp.119-136
    • /
    • 2000
  • Being autotrophic, algae occupy a trategic place in the biosphere. They produce oxygen both directly and indirectly through the chloroplasts of all green plants. The chloroplasts are believed to have originated from archaic prokaryotic algae through endosymbiosis with primitive eukaryotic cells. Phytoplankton and other algae regulate the global environment not only by releasing oxygen but also by fixing carbon dioxide. They affect water quality, help in the treatment of sewage, and produce biomass. They can be used to produce hydrogen which is a clean fuel, and biodiesel, and fix $N_2$ for use as a biofertilizer. Some other services of algae to the environment include restoration of metal damaged ecosystems, reducing the atmospheric $CO_2$ load and citigating global warming, reclamation of saline-alkaline unfertile lands, and production of dimethyl sulphide (DMS) and oxides of nitrogen (NOx) involved in the regulation of UV radiation. ozone concentration, and global warming. Algae can be valuable in understanding and resolving certain environmental issues.

  • PDF