• Title/Summary/Keyword: glass powder

Search Result 542, Processing Time 0.031 seconds

An Experimental Study on the Properties of Mortar with Powdered Waste Glasses (폐유리 미분말을 혼입한 모르타르의 특성에 관한 실험적 연구)

  • Kim, Ho-Soo;Baek, Chul-Woo;Park, Cho-Bum;Jeun, Jun-Young;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.805-808
    • /
    • 2006
  • At the present time, as part of the movement of natural resource conservation, there have been doing many recycling research works for wasted concrete, etc. In this study, we carried out an experiment for using crushed waste glass as a binder. It dealt with comparative analysis of the engineering properties of mortar containing crushed waste glass through a physical experiment. The experimental variables are the crushed waste glass powder substitution ratio(C-type : $0{\sim}25%$, B-type : $0{\sim}50%$, F-type : $0{\sim}100%$). According to this study, As the substitute of waste glass powder increases, air content and unit weight, the compressive strength decreases exactly proportion to the substitute ratio of waste glass powder. if, when waste glass is substituted as the binder, it is necessary to use an admixture.

  • PDF

Micro-deformation behavior of Brittle Hf-based Metallic Glass during Mechanical Milling (기계적 합금화 공정에 의한 Hf계 비정질 분말의 미세변형거동 관찰)

  • Kim, Song-Yi;Lee, A-Young;Cha, Eun-Ji;Kwon, Do-Hun;Hong, Sung-Uk;Lee, Min-Woo;Kim, Hwi-Jun;Lee, Min-Ha
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.246-250
    • /
    • 2018
  • In this study, we investigate the deformation behavior of $Hf_{44.5}Cu_{27}Ni_{13.5}Nb_5Al_{10}$ metallic glass powder under repeated compressive strain during mechanical milling. High-density (11.0 g/cc) Hf-based metallic glass powders are prepared using a gas atomization process. The relationship between the mechanical alloying time and microstructural change under phase transformation is evaluated for crystallization of the amorphous phase. Planetary mechanical milling is performed for 0, 40, or 90 h at 100 rpm. The amorphous structure of the Hf-based metallic glass powders during mechanical milling is analyzed using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Microstructural analysis of the Hf-based metallic glass powder deformed using mechanical milling reveals a layered structure with vein patterns at the fracture surface, which is observed in the fracture of bulk metallic glasses. We also study the crystallization behavior and the phase and microstructure transformations under isothermal heat treatment of the Hf-based metallic glass.

Thermal Stability of Glass Powder and Rubber-Filled Phenolic Resins and Dynamic Mechanical Properties of Glass Braid/Phenolic Composites (유리분말 및 고무 충진 페놀수지의 열안정성 및 Glass Braid/페놀수지 복합재료의 동역학적 열특성)

  • Yoon, Sung Bong;Cho, Donghwan;Lee, Geon-Woong
    • Journal of Adhesion and Interface
    • /
    • v.8 no.4
    • /
    • pp.14-22
    • /
    • 2007
  • In the present study, the effect of milled glass powder and liquid-type nitrile rubber (NBR) on the thermal stability of phenolic resin and the dynamic mechanical properties of glass braid/phenolic composites has been investigated by means of thermogravimetric analysis and dynamical mechanical analysis. It was found that both milled glass power and NBR filled in the waterborne phenolic resin significantly influenced the thermal stability of phenolic resins and the storage modulus and tan delta of the composites. The presence of glass powder increased the thermal stability of the phenolic resin, whereas the presence of NBR resulted in the weight loss in the specific temperature range. The thermal stability of the phenolic resins without and with the fillers was dependent not only on the cure temperature but also on the cure time. The variation of the storage modulus and tan ${\delta}$ of strip-type glass braid/phenolic composites was also influenced with the introduction of glass powder and NBR to the phenolic matrix as well as by the cure conditions given.

  • PDF

A Development of Recycled Glass Powder using Asphalt Concrete Filler and Evaluation of Practical Use at the Field (아스콘 채움재용 폐유리 미분말 개발 및 현장 적용 평가)

  • Ryu, Deug-Hyun;Jeon, Jun-Young;Jo, Shin-Haeng;Jun, Soon-Je
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.113-116
    • /
    • 2007
  • This is a research for evaluated recycled glass powder to add asphalt concrete filler. To make a comparative study, Mechanical performance of lime stone and slag dust Mixtures was evaluated according to test procedure. Lab. performance tests included marshall stability, indirect tensile strength, resilient modulus and wheel tracking. Water resistance tests were evaluated by marshall strength ratio and tensile strength ratio. In conclusion, Results of mechanical performance showed that recycled glass powder mixtures were equivalent to conventional mixtures. Especially, result of tensile strength ratio tested recycled glass powder mixtures was superior to conventional mixtures.

  • PDF

THE PHYSCIAL PORPERTIES OFY Y2O3-CONTAINING GLASS INFILTRATED ALUMINA CORE MADE BY PRESSURELESS POWDER PACKING METHOD (무가압 분말충전 알루미나에 이트리아를 함유한 붕규산염 유리를 침투시킨 코아 도재의 물성)

  • Whang, Seung-Woo;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.221-243
    • /
    • 1997
  • The objective of this study was to characterize the mechanical properties of $Y_{2}O_{3}$-containing glass infiltrated ceramic core material, which was made by pressureless powder packing method. A pure alumina powder with a grain size of about $4{\mu}m$ was packed without pressure is silicon mold to form a bar shaped sample, and applied PVA solution as a binder. Samples were sinterd at $1350^{\circ}C$ for 1 hour. After cooling, $Y_{2}O_{3}$-containing glass($SiO_{2},\;Y_{2}O_{3},\;B_{2}O_{3},\;Al_{2}O_{3}$, ect) was infiltrated to the sinterd samples at $1300^{\circ}C$ for 2 hours and cooled. Six different proportions $Y_{2}O_{3}$ of were used to know the effect of the mismatch of the thermal expansion coefficient between alumina powder and glass. The samples were ground to $3{\times}3{\times}30$ mm size and polished with $1{\mu}m$ diamond paste. Flexural strength, fracture toughness, hardness and other physical properties were obtained, and the fractured surface was examined with SEM and EPMA. Ten samples of each group were tested and compared with In-Ceram(tm) core materials of same size made in dental laboratory. The results were as follows : 1. The flexural strengths of group 1 and 3 were significantly not different with that of In-Ceram, but other experimental groups were lower than In-Ceram. 2. The shrinkage rate of samples was 0.42% after first firing, and 0.45% after glass infiltration. Total shrinkage rate was 0.87%. 3. After first firing, porosity rate of experimental groups was 50%, compared with 22.25% of In-Ceram. After glass infiltration, porosity rate of experimental groups was 2%, and 1% in In-Ceram. 4. There was no statistical difference in hardness between two materials tested, but in fracture toughness, group 2 and 3 were higher than In-Ceram. 5. The thermal expansion coefficients of experimental groups were varied to $4.51-5.35{\times}10^{-6}/^{\circ}C$ according to glass composition, also the flexural strengths of samples were varied. 6. In a view of SEM, many microparticles about $0.5{\mu}m$ diameter and $4{\mu}m$ diameter were observed in In-Ceram. But in experimental group, the size of most particles was about $4{\mu}m$, and a little microparticles was observed. The results obtained in this study showed that the mismatch of the thermal expansion coefficients between alumina powder and infiltrated glass affect the flexural strength of alumin/glass composite. The $Y_{2}O_{3}$-containing glass infiltrated ceramic core made by powder packing method will takes less time and cost with sufficient flexural strength similar to all ceramic crown made with slip casting technique.

  • PDF

Electrical Properties of Thick-Film Resistor Prepared by Using RuO2-Glass Composite Powder (RuO2-유리 복합분말을 이용하여 제조된 후막 저항의 전기적 특성 연구)

  • Kim, Min-Sik;Ryu, Sung-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.301-307
    • /
    • 2017
  • The purpose of this study is to investigate the electrical properties of thick-film resistor (TFR) prepared from $CaO-ZnO-B_2O_3-Al_2O_3-SiO_2$ (CZBAS) glass containing $RuO_2$ particles. $RuO_2$-glass composite powder was made by mixing and melting oxide powders of constituents. For comparison, $RuO_2$ powder was simply mixed with glass powder. $RuO_2$-40wt% glass composite and mixture were dispersed in an organic binder to obtain printable resistor paste and then thick-film was formed by screen printing, followed by sintering at the range between $750^{\circ}C$ and $900^{\circ}C$ for 10 min with a heating rate of $50^{\circ}C/min$ in an ambient atmosphere. $RuO_2$-glass composite sample showed much higher resistance compared to the simple mixed sample. This could be attributed to the difference in conducting mechanism. After sintering at $850^{\circ}C$, temperature coefficient of resistance of composite sample was lower than that of simple-mixed sample. TFR with dense and homogeneous microstructure could be obtained by using $RuO_2$-glass composite powder.

The Effect of In-flight Bulk Metallic Glass Particle Temperature on Impact Behavior and Crystallization

  • Kim, Soo-Ki;Yoon, Sang-Hoon;Lee, Chang-Hee
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.242-243
    • /
    • 2006
  • NiTiZrSiSn bulk metallic glass powder was produced using inert gas atomization and then was sprayed onto a SS 41 mild steel substrate using the kinetic spraying process. Through this study, the effects of thermal energy of in-flight particle and crystallization degree by powder preheating temperature were evaluated. The deformation behavior of bulk metallic glass is very interesting and it is largely dependent on the temperature. The crystalline phase formation at impact interface was dependent on the in-flight particle temperature. In addition, variations in the impact behavior need to be considered at high strain rate and in-flight particle temperature.

  • PDF

Effect of waste glass as powder and aggregate on strength and shrinkage of fiber reinforced foam concrete

  • Mayada A. Kareem;Ameer A. Hilal
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.331-349
    • /
    • 2023
  • Foam concrete can be considered as environmental friendly material due to its low weight, its minimal cost and a possibility to add waste materials in its production. This paper investigates the possibility of producing foam concrete with waste glass as powder and aggregate. Then, the effect of using waste glass on strength and drying shrinkage of foam concrete was examined. Also, the effect of incorporating polypropylene fibers (12 mm length and proportion of 0.5% of a mix volume) on distribution of waste glass as coarse particles within 1200 kg/m3 foam concrete mixes was evaluated. Waste glass was used as powder (20% of cement weight), as coarse particles (25%, 50% and 100% instead of sand volume) and as fine particles (25% instead of sand volume). From the results, the problem of non-uniform distribution of coarse glass particles was successfully solved by adding polypropylene fibers. It was found that using of waste glass as coarse aggregate led to reduce the strength of foam concrete mixes. However, using it with polypropylene fibers in combination helped in increasing the strength by about 29- 50% for compressive and 55- 71% for splitting tensile and reducing the drying shrinkage by about (31- 40%). In general, not only the fibers role but also the uniformly distributed coarse glass particles helped in improving and enhancing the strength and shrinkage of the investigated foam concrete mixes.

Effect of Carbon-Nanotube Addition on Thermal Stability of Ti-based Metallic Glass Composites

  • Hsu, Chih-Feng;Lee, Pee-Yew
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1057-1058
    • /
    • 2006
  • The preparation of $Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders was accomplished by the mechanical alloying of a pure Ti, Cu, Ni, Sn and carbon nanotube (CNT) powder mixture after 8 h milling. In the ball-milled composites, the initial CNT particles were dissolved in the Ti-based alloy glassy matrix. The bulk metallic glass composite was successfully prepared by vacuum hot pressing the as-milled CNT/$Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders. A significant hardness increase with the CNT additions was observed for the consolidated composite compacts.

  • PDF

Assessment of compressive strength of cement mortar with glass powder from the early strength

  • Wang, Chien-Chih;Ho, Chun-Ling;Wang, Her-Yung;Tang, Chi
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • The sustainable development principle of replacing natural resources with renewable material is an important research topic. In this study, waste LCD (liquid crystal display) glass powder was used to replace cement (0%, 10%, 20% and 30%) through a volumetric method using three water-binder ratios (0.47, 0.59, and 0.71) to make cement mortar. The compressive strength was tested at the ages of 7, 28, 56 and 91 days. The test results show that the compressive strength increases with age but decreases as the water-binder ratio increases. The compressive strength slightly decreases with an increase in the replacement of LCD glass powder at a curing age of 7 days. However, at a curing age of 91 days, the compressive strength is slightly greater than that for the control group (glass powder is 0%). When the water-binder ratios are 0.47, 0.59 and 0.71, the compressive strength of the various replacements increases by 1.38-1.61 times, 1.56-1.80 times and 1.45-2.20 times, respectively, during the aging process from day 7 to day 91. Furthermore, a prediction model of the compressive strength of a cement mortar with waste LCD glass powder was deduced in this study. According to the comparison between the prediction analysis values and test results, the MAPE (mean absolute percentage error) values of the compressive strength are between 2.79% and 5.29%, and less than 10%. Thus, the analytical model established in this study has a good forecasting accuracy. Therefore, the proposed model can be used as a reliable tool for assessing the design strength of cement mortar from early age test results.