• Title/Summary/Keyword: glass furnace

Search Result 200, Processing Time 0.027 seconds

Boron Diffused Layer Formation Process and Characteristics for High Efficiency N-type Crystalline Silicon Solar Cell Applications (N-type 고효율 태양전지용 Boron Diffused Layer의 형성 방법 및 특성 분석)

  • Shim, Gyeongbae;Park, Cheolmin;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.139-143
    • /
    • 2017
  • N-type crystalline silicon solar cells have high metal impurity tolerance and higher minority carrier lifetime that increases conversion efficiency. However, junction quality between the boron diffused layer and the n-type substrate is more important for increased efficiency. In this paper, the current status and prospects for boron diffused layers in N-type crystalline silicon solar cell applications are described. Boron diffused layer formation methods (thermal diffusion and co-diffusion using $a-SiO_X:B$), boron rich layer (BRL) and boron silicate glass (BSG) reactions, and analysis of the effects to improve junction characteristics are discussed. In-situ oxidation is performed to remove the boron rich layer. The oxidation process after diffusion shows a lower B-O peak than before the Oxidation process was changed into $SiO_2$ phase by FTIR and BRL. The $a-SiO_X:B$ layer is deposited by PECVD using $SiH_4$, $B_2H_6$, $H_2$, $CO_2$ gases in N-type wafer and annealed by thermal tube furnace for performing the P+ layer. MCLT (minority carrier lifetime) is improved by increasing $SiH_4$ and $B_2H_6$. When $a-SiO_X:B$ is removed, the Si-O peak decreases and the B-H peak declines a little, but MCLT is improved by hydrogen passivated inactive boron atoms. In this paper, we focused on the boron emitter for N-type crystalline solar cells.

The Effect of Promoters Addition on NOx Removal by $NH_3$ over V$V_2O_5/TiO_2$

  • Lee, Keon-Joo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.29-36
    • /
    • 2002
  • The selective catalytic reduction (SCR) reaction of promoter catalysts was investigated in this study. A pure anatase type of TiO$_2$ was used as support. Activation measurement of prepared catalysts was practiced on a fixed reactor packing by the glass bead after filling up catalysts in 1/4 inch stainless tube. The reaction temperature was measured by K-type thermocouple and catalyst was heated by electric furnace. The standard compositions of the simulated flue gas mixture in this study were as follows: NO 1,780ppm, NH$_3$1,780ppm, $O_2$1% and $N_2$ as balance gas. In this study, gas analyzer was used to measure the outgassing gas. Catalyst bed was handled for 1hr at 45$0^{\circ}C$, and the reactivity of the various catalyst was determined in a wide temperature range. Conversion of NH$_3$/NO ratio and of $O_2$ concentration was practiced at 1,1.5 and 2, respectively. The respective space velocity were as follows . 10,000, 15,000 and 17,000 hr-1. It was found that the maximum conversion temperature range was in a 5$0^{\circ}C$. It was also found toi be very sensitive at space velocity, $O_2$ concentration, and NH$_3$/NO ratio. We also noticed that the maximum conversion temperature of (W, Mo, Sn) -V$_2$O$_{5}$/TiO$_2$ catalysts was broad. Specially WO$_3$-V$_2$O$_{5}$TiO$_2$2 catalyst appeared nearly 100% conversion at not only above 30$0^{\circ}C$ ut also below 25$0^{\circ}C$. At over 30$0^{\circ}C$, NH$_3$ oxidation decreased with decrease of surface excess oxygen. In addition, WO$_3$-V$_2$O$_{5}$TiO$_2$ catalyst did not appear to affect space velocity, $O_2$ concentration, and NH$_3$/NO ratio.ratio.

Studies on Effect of S/Se Ratio on the Properties of Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Films by Sulfo-Selenization of Stacked Precursor Thin Films (열처리 시 S/Se 분말 비율에 따른 Cu2ZnSnSe4 (CZTSSe) 박막의 합성 및 특성 평가)

  • Gang, Myeng Gil;He, Ming Rui;Hong, Chang Woo;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.177-181
    • /
    • 2014
  • $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) absorber thin films were prepared on Mo coated soda lime glass substrates by sulfo-selenization of sputtered stacked Zn-Sn-Cu precursor thin films. The Zn-Sn-Cu precursor thin films were sulfo-selenized inside a graphite box containing S and Se powder using rapid thermal processing furnace at $540^{\circ}C$ in Ar atmosphere with pre-treatment at $300^{\circ}C$. The effect of different S/Se ratio on the structural, compositional, morphological and electrical properties of the CZTSSe thin films were studied using XRD (X-ray diffraction), XRF (X-ray fluorescence analysis), FE-SEM (field-emission scanning electron microscopy), respectively. The XRD, FE-SEM, XRF results indicated that the properties of sulfo-selenized CZTSSe thin films were strongly related to the S/Se composition ratio. In particular, the CZTS thin film solar cells with S/(S+Se)=0.25 shows best conversion efficiency of 4.6% ($V_{oc}$ : 348 mV, $J_{sc}$ : $26.71mA/cm^2$, FF : 50%, and active area : $0.31cm^2$). Further detailed analysis and discussion for effect of S/Se composition ratio on the properties CZTSSe thin films will be discussed.

The Embodiment of GAS Pressure Controller for Temperature Control of Sing Crystal $(Al_2O_3)$ Growing Furnace (단결정$(Al_2O_3)$ 성장 노(爐)의 온도 조절용 GAS압력 제어기의 구현)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.207-211
    • /
    • 2007
  • It is a quite quality concerning to control the temperature of single crystalline growth as it does when we get most of heat treating products. It is also important factor to control the temperature when we make the $Al_2O_3$(single crystalline) used to artificial jewels, glass of watches, and heat resistant transparent glasses. Thus, it is a major interest to get the proper temperature in accordance with the time process while we are making mixture of oxygen and hydrogen to have the right temperature. In this paper, we will study of electrical valve positioning system with DC-Motor for the gas mixture to improve the quality of products.

  • PDF

Effects of Yittrium and Manganese on the PTCR Barium Titanate Synthesized by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 합성한 PTCR Barium Titanate에 미치는 Y와 Mn의 효과)

  • 김복희;이정형;윤연현;최의석;정웅기
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1169-1177
    • /
    • 1995
  • Barium nitrate and yittrium nitrate were dissolved into distilled water. Titaium hydroxide precipitated from titanium chloride with NH4OH was dissolved into nitric acid. Each aqueous solution was mixed for 12 hr in the composition of Ba1-xYxTiO3 (x=0.1∼0.6) and the concentration of mixed solution was 0.1 mol/ι. The mixed solution was sprayed with an ultrasonic atomizer and carried into an electric furnace which was kept at 900∼1000$^{\circ}C$ and pyrolyzed. Pyrolyzed powders were collected on the glass filter with vacuum pump. Aqueous Mn solutiion was added into the synthesized powders, mixed with ultrasonic vibration and sintered at 1300∼1400$^{\circ}C$. Synthesized powders were characterized with SEM, XRD, DT-TGA, and BET. Microsture and resistivity of sintered body were investigated with SEM and multimeter. The results of this experiment were as follows; 1) Yittrium dooped BaTiO3 powders were synthesized above 950$^{\circ}C$. 2) The average particle sizes of powders from BET specific surface area and SEM were 0.045$\mu\textrm{m}$, 0.046$\mu\textrm{m}$ respectively. The particle size distribution was narrow in the range of 0.1∼1.0$\mu\textrm{m}$ from SEM. 3) Room temperature resistivity and pmax/pmin of 0.4 mol% Y doped specimen which was sintered at 1375$^{\circ}C$ were 102∼3 (Ω$.$cm) and 102∼3 respectively. 4) Room temperature resistivity and pmax/pmin of 0.4 mol% Y and 0.04 at% Mn added specimen which was sintered at 1375$^{\circ}C$ were 102∼3 (Ω$.$cm) and 106∼7 respectively. 5) Grain growth was inhibited with addition of Y2O3 and enhanced in addition of Mn by 0.05 atm%.

  • PDF

Annealing of Electrodeposited Cu(In,Ga)Se2 Thin Films Under Se Gas Atmosphere (전해증착 Cu(In,Ga)Se2 박막의 Se가스 분위기 열처리)

  • Shin, Su-Jung;Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.461-467
    • /
    • 2011
  • Cu(In, Ga)$Se_2$ (CIGS) precursor films were electrodeposited on Mo/glass substrates in acidic solutions containing $Cu^{2+}$, $In^{3+}$, $Ga^{3+}$, and $Se^{4+}$ ions at -0.6 V (SCE) and pH. 1.8. In order to induce recrystallization, the electrodeposited $Cu_{1.00}In_{0.81}Ga_{0.09}Se_{2.08}$ (25.0 at.% Cu + 20.2 at.% In + 2.2 at.% Ga + 52.0 at.% Se) precursor films were annealed under a high Se gas atmosphere for 15, 30, 45, and 60 min, respectively, at $500^{\circ}C$. The Se amount in the film increased from 52 at.% to 62 at.%, whereas the In amount in the film decreased from 20.8 at.% to 9.1 at.% as the annealing time increased from 0 (asdeposited state) to 60 min. These results were attributed to the Se introduced from the furnace atmosphere and reacted with the In present in the precursor films, resulting in the formation of the volatile $In_2Se$. CIGS precursor grains with a cauliflower shape grew as larger grains with the $CuSe_2$ and/or $Cu_{2-x}Se$ faceted phases as the annealing times increased. These faceted phases resulted in rough surface morphologies of the CIGS films. Furthermore, the CIGS layers were not dense because the empty spaces between the grains were not removed via annealing. Uniform thicknesses of the $MoSe_2$ layers occurred at the 45 and 60 min annealing time. This implies that there was a stable reaction between the Mo back electrode and the Se diffused through the CIGS film. The results obtained in the present research were sufficiently different from comparable studies where the recrystallization annealing was performed under an atmosphere of Ar gas only or a low Se gas pressure.

Identification of Fuzzy Inference System Based on Information Granulation

  • Huang, Wei;Ding, Lixin;Oh, Sung-Kwun;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.575-594
    • /
    • 2010
  • In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.

The Study on the Characteristic of Mono Crystalline Silicon Solar Cell with Change of $O_2$ Injection during Drive-in Process and PSG Removal (단결정 실리콘 태양전지 도핑 확산 공정에서 주입되는 $O_2$ 가스와 PSG 유무에 따른 특성 변화)

  • Choi, Sung-Jin;Song, Hee-Eun;Yu, Gwon-Jong;Lee, Hi-Deok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.105-110
    • /
    • 2011
  • The doping procedure in crystalline silicon solar cell fabrication usually contains oxygen injection during drive-in process and removal of phosphorous silicate glass(PSG). In this paper, we studied the effect of oxygen injection and PSG on conversion efficiency of solar cell. The mono crystalline silicon wafers with $156{\times}156mm^2$, $200{\mu}m$, $0.5-3.0{\Omega}{\cdot}cm$ and p-type were used. After etching $7{\mu}m$ of the surface to form the pyramidal structure, the P(phosphorous) was injected into silicon wafer using diffusion furnace to make the emitter layer. After then, the silicon nitride was deposited by the PECVD with 80 nm thickness and 2.1 refractive index. The silver and aluminium electrodes for front and back sheet, respectively, were formed by screen-printing method, followed by firing in 400-425-450-550-$880^{\circ}C$ five-zone temperature conditions to make the ohmic contact. Solar cells with four different types were fabricated with/without oxygen injection and PSG removal. Solar cell that injected oxygen during the drive-in process and removed PSG after doping process showed the 17.9 % conversion efficiency which is best in this study. This solar cells showed $35.5mA/cm^2$ of the current density, 632 mV of the open circuit voltage and 79.5 % of the fill factor.

  • PDF

Resistive Switching Effect of the $In_2O_3$ Nanoparticles on Monolayered Graphene for Flexible Hybrid Memory Device

  • Lee, Dong Uk;Kim, Dongwook;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.396-396
    • /
    • 2013
  • The resistive random access memory (ReRAM) has several advantages to apply next generation non-volatile memory device, because of fast switching time, long retentions, and large memory windows. The high mobility of monolayered graphene showed several possibilities for scale down and electrical property enhancement of memory device. In this study, the monolayered graphene grown by chemical vapor deposition was transferred to $SiO_2$ (100 nm)/Si substrate and glass by using PMMA coating method. For formation of metal-oxide nanoparticles, we used a chemical reaction between metal films and polyamic acid layer. The 50-nm thick BPDA-PDA polyamic acid layer was coated on the graphene layer. Through soft baking at $125^{\circ}C$ or 30 min, solvent in polyimide layer was removed. Then, 5-nm-thick indium layer was deposited by using thermal evaporator at room temperature. And then, the second polyimide layer was coated on the indium thin film. After remove solvent and open bottom graphene layer, the samples were annealed at $400^{\circ}C$ or 1 hr by using furnace in $N_2$ ambient. The average diameter and density of nanoparticle were depending on annealing temperature and times. During annealing process, the metal and oxygen ions combined to create $In_2O_3$ nanoparticle in the polyimide layer. The electrical properties of $In_2O_3$ nanoparticle ReRAM such as current-voltage curve, operation speed and retention discussed for applictions of transparent and flexible hybrid ReRAM device.

  • PDF

Synthesis of Cu-coated Ni-based Bulk Metallic Glass Powders by Gas Atomization and Spray Drying Process

  • Kim, Byoung-Kee;Kim, Yong-Jin;Kim, Jin-Chun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.936-936
    • /
    • 2006
  • Bulk amorphous materials have been intensively studied to apply for various advanced industry fields due to their high mechanical, chemical and electrical properties. These materials have been produced by several techniques such as mechanical alloying, melt spinning and gas atomization, etc. Among them, the atomization is the most potential technique for commercialization due to high cooling rate during solidification of the melt and mass productivity. However, the amorphous powders still have some limitations because of their low ductility and toughness. Therefore, intensive efforts have to be carried out to increase the ductility and toughness. In this study, the Ni-based amorphous powder was produced by the gas atomization process. And in order to increase the ductile toughness, ductile Cu phase was coated on the Ni amorphous powder by spray drying process. The characteristics of the as-synthesis powders have been examined and briefly mentioned. The master alloy with $Ni_{57}Zr_{20}Ti_{16}Si_2Sn_3$ was prepared by vacuum induction melting furnace with graphite crucible and mold. The atomization was conducted at $1450^{\circ}C$ under the vacuum of $10^{-2}$ torr. The gas pressure during atomization was varied from 35 to 50 bars. After making the Ni amorphous powders, the spray drying was processed to produce the Cu -coated Ni amorphous composite powder. The amorphous powder and Cu nitrate solution were mixed together with a small amount of binder and then it was sprayed at temperature of $130^{\circ}C$ and rotating speed of 15,000 R.P.M.

  • PDF