• 제목/요약/키워드: glass furnace

검색결과 200건 처리시간 0.025초

고전고급제어(Conventional Advanced Control)를 이용한 TV 브라운관 유리 용해로의 온도제어에 관한 연구 (A Study on the Temperature Control of a TV-Glass Melting Furnace Using the Conventional Advanced Control)

  • 문은철;김흥식
    • 제어로봇시스템학회논문지
    • /
    • 제6권9호
    • /
    • pp.822-830
    • /
    • 2000
  • A conventional advanced control algorithm is proposed in this paper for improved temperature regulation of a TV-glass melting furnace. The TV-Glass melting furnace is a typical MIMO(Multi-Input Multi Output) system which is subject to various thermal disturbances. Because of its complexity, a detailed mathematical model of the furnace is hard to establish. To design a temperature control control system of the furnace, major input-output variables are selected first, and simple FOPDT(First Order Plus Dead Time) models are established based on the physical meaning and experimental process data. Based on the FOPDT models, a multi-loop control system composed of cascade and single loops are designed for effective control of the MIMO system. Practical implementation on the 150 ton/day furnace using the DCS(Distributed Control System) showed that the proposed control technique performs better than manual control.

  • PDF

광섬유 생산공정용 퍼니스 내의 모재 가열 및 유리섬유 인출에 대한 열전달 해석 (HEAT TRANSFER ANALYSIS ON THE PREFORM HEATING AND THE GLASS FIBER DRAWING IN A GRAPHITE FURNACE FOR OPTICAL FIBER MANUFACTURING PROCESS)

  • 김경진;김동주;곽호상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.88-91
    • /
    • 2011
  • Glass fiber drawing from a silica preform is one of the most important processes in optical fiber manufacturing. High purify silica preform of cylindrical shape is fed into the graphite furnace, and then a very thin glass fiber of 125 micron diameter is drawn from the softened and heated preform. A computational analysis is performed to investigate the heat transfer characteristics of preform heating and the glass fiber drawing in the furnace. In addition to the dominant radiative heating of preform by the heating element in the furnace, present analysis also includes the convective heat transport by the gas flowing around the preform that experiences neck-dawn profile and the freshly drawn glass fiber at high fiber drawing speed. The computational results present the effects of gas flow on the temperature of preform and glass fiber as well as the neck-down profile of preform.

  • PDF

유리 용융로에서 자연대류의 열적 불안정성 (Thermal Instability of Natural Convection in a Glass Melting Furnace)

  • 임광옥;이관수
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1774-1783
    • /
    • 1998
  • The transition from steady laminar to chaotic convection in a glass melting furnace specified by upper surface temperature distribution has been studied by the direct numerical analysis of the two and three-dimensional time dependent Navier-Stokes equations. The thermal instability of convection roll may take place when modified Rayleigh number($Ra_m$) is larger than $9.71{\times}10^4$. It is shown that the basic flows in a glass melting furnace are steady laminar, unsteady periodic, quasi-periodic or chaotic flow. The dimensionless time scale of unsteady period is about the viscous diffusion time, ${\tau}_d=H^2/{\nu}_0$. Through primary and secondary instability analyses the fundamental unsteady feature in a glass melting furnace is well defined as the unsteady periodic or weak chaotic flow.

퍼지 전문가 시스템을 이용한 유리 용해로 이상 감시 시스템 구축 사례 (A Fault Diagnosis System of Glass Melting furnace Using A Fuzzy Export System)

  • 문운철
    • 지능정보연구
    • /
    • 제8권1호
    • /
    • pp.63-74
    • /
    • 2002
  • 본 논문에서는 용해로 이상감시를 위한 실시간 유리 용해로 운전 전문가시스템을 구축한 결과를 소개한다. 유리용해 공정에서는 운전자의 경험지식에 의해 내부의 상황을 판단하게 되고, 이는 용해로 수명과 제품의 품질에 중요한 영향을 준다 이를 전문가 시스템으로 구현하기 위하여, 먼저 기존 운전자의 지식을 취합, 분석한다. 그 후, 취합된 각 지식들의 특성에 부합하도록 이진 규칙(Crisp Rule)과 퍼지 규칙(Fuzzy Rule)으로 구분한다. 이 때, 선형 회귀분석을 통하여 퍼지 규칙의 입력을 결정함으로써 보다 정확한 운전 지식의 표현이 가능하도록 하였다. 설계된 알고리즘은 젠심(Gensym)사의 실시간 전문가 시스템 개발 툴인 G2를 사용하여 구현하였다. 제시된 퍼지 전문가 시스템은 삼성코닝(주) 수원사업장의 실제 생산 용해 공정에 직접 적용하여 그 효율성이 검증되었다.

  • PDF

플라즈마/연소 융합기술을 이용한 세라믹계 유리 분말 기중용해로 개발 (Development of glass melting furnace using both plasma and combustion)

  • 동상근;이은경;정우남
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.203-205
    • /
    • 2014
  • This paper is suggesting about glass melting technology, using both plasma and combustion heat source. The mixed flame was formed to flow pattern of turning by plasma and combustion in melting zone. The burning time was extremely extended for vitrification of raw materials in melting zone, as a result, meting time was significantly reduced. This system was designed to smaller size than existing glass melting facilities. We had achieved to 30% energy saving, due to reduce residence time of melted materials inside furnace.

  • PDF

유리 용해로 온도 제어를 위한 퍼지 로직과 PI 제어기의 복합형 제어 알고리듬 (A hybrid algorithm of fuzzy logic and conventional PI controller for the temperature control of glass melting furnace)

  • 문운철;김흥식;박영문
    • 제어로봇시스템학회논문지
    • /
    • 제4권2호
    • /
    • pp.215-219
    • /
    • 1998
  • This paper presents a practical application of fuzzy logic control to temperature control of glass melting furnace. Due to the characteristics of glass melting furnace, a hybrid algorithm of conventional PI controller and fuzzy logic controller is proposed and discussed. Practical implementation results of the production furnace showed the effectiveness of the proposed control algorithm.

  • PDF

유리용융로의 시간종속 자연대류 (Time-dependent natural convection in a glass melting furnace)

  • 임광옥;이관수
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.919-927
    • /
    • 1997
  • The main purpose of this study is to determine bifurcation as the primary instability of a glass melting furnace. Steady-state and unsteady characteristics of natural convection in the partially open cavity as appeared in a glass melting furnace is investigated by using numerical analysis. Three types of convection, such as steady laminar, unsteady periodic or unsteady quasi-periodic convection may occur according to the temperature difference between upper two isothermal surfaces along the depth of cavity in a glass melting furnace. In the temperature difference of 150-900 K between batch and free surface, the larger the temperature difference, the weaker the convection strength and unsteadiness. Since the glass viscosity is increasing exponentially in the lower temperature, the batch freezes the thermofluidic field especially below the surface of it. If the depth of cavity is 0.5 m, the bifurcation to time-dependent natural convection may occur in the range of 60-650 K. If that is 1.0 m, it may occur in the whole range of temperature difference.

유리용융로에서 자유표면 열유속과 좌우벽면 온도차에 의한 자연대류 (Natural convection induced by free surface heat flux and temperature difference between left and right walls in glass melting furnace)

  • 임광옥;이관수
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3706-3713
    • /
    • 1996
  • A numerical study on natural convection induced by free surface heat flux and cold left and hot right walls in glass melting furnaces has been performed. A function of heat flux derived from the combustion environments of actual glass melting furnace is applied to thermal boundary condition at free surface. Fundamentally there exist two flow cells in cavity (left counterclockwise one and right clockwise one). The effects of heat flux and Rayleigh number are investigated through two-dimensional steady-state assumption. The convection strength of two flow cell located in left region continuously increases. In the mean time the strength of flow cell in right region increases and then decreases. Critical Rayleigh number in which two flow cells take place above and below show linear dependence on the free surface heat flux. To maintain the traditional flow pattern (left and right flow cells) in glass melting furnace, Rayleigh number is recommended to be below 10$^{5}$ .

머플 가열로에서의 대면적 유리기판의 가열공정에 대한 열적 연구 (HEAT-TREATMENT OF LARGE-SCALE GLASS BACKPLANES IN A MUFFLE FURNACE)

  • 김동현;손기헌;허남건;김병국;김형준;박승호
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.16-23
    • /
    • 2012
  • Current display manufacturing processes apply thermal treatment of glass backplanes widely for hydrogen degassing, crystallization of thin-films, tempering, forming, and precompaction. Estimation of the characteristics of transient heating stages and thermal non-uniformities on a single glass substrate or in a stack of glasses are extremely helpful to understand non-homogeneity of mechanical and electronic features of nano/micro structures of end products. Based on simple heat transfer models and using an electric muffle furnace, temperature variations in a glass stack were predicted and measured for glass backplanes of $1.5{\times}1.85m^2$ in size and 0.7 mm in thickness. Except for the period of putting glass backplanes into the furnace, thermal radiation was the major heating mechanism for the treatment and theoretical predictions agreed well to the experimental temperatures on the backplanes. Using the theoretical model, thermal fields for a glass stack of glass-size, $2.2{\times}2.5m^2$, and of the number of sheets, 1 to 12, were calculated for practical design and manufacturing of the muffle furnace for large-scale displays, e.g. up to $8^{th}$ generation.

순산소를 이용한 유리 용해로의 연소특성에 관한 실험적 연구 (Experimental study on combustion characteristics of oxy-fuel glass melting furnace)

  • 김세원;안재현;김용모;신명철
    • 한국연소학회지
    • /
    • 제9권1호
    • /
    • pp.1-10
    • /
    • 2004
  • The results of a series of experiments executed by using two pilot-scale oxy-fuel burners are presented. The oxy-fuel burners are designed for maximum capacity of 50,000kcal/hr, 200,000kcal/hr and installed in the test furnace. The effects of turn-down ratio, excess oxygen ratio, nozzle exit velocity, injection angle, and swirl vane angle on the combustion characteristic are investigated. Temperature distributions are measured using R-type and Molybdenum sheathed C-type thermocouple at various points of the flame. The results showed that maximum temperature and mean temperature increase with the increase of turn-down ratio and momentum. The maximum flame temperature was increased about 35% compared to the case of equivalent air operated condition. In addition, optimum burner type, excess oxygen ratio and nozzle characteristics are obtained for this oxy-fuel glass melting furnace.

  • PDF