• 제목/요약/키워드: glass fiber textile

검색결과 51건 처리시간 0.025초

Bonding Performance of Glulam Reinforced with Textile Type of Glass- and Aramid-Fiber, GFRP and CFRP

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권2호
    • /
    • pp.156-162
    • /
    • 2011
  • To evaluate the bonding performance of reinforced glulam, the textile type of glass fiber and aramid fiber, and the sheet type of glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP) were used as reinforcements. The reinforced glulam was manufactured by inserting reinforcement between the outmost and middle lamination of 5ply glulam. The types of adhesives used in this study were polyvinyl acetate resins (MPU500H, and MPU600H), polyurethane resin and resorcinol resin. The block shear strengths of the textile type in glass fiber reinforced glulam using MPU500H and resorcinol resin were higher than 7.1 N/$mm^2$, and these glulams passed the wood failure requirement of Korean standards (KS). In case of the sheet types, GFRP reinforced glulams using MPU500H, polyurethane resin and resorcinol resin, and CFRP reinforced glulams using MPU500H and polyurethane resin passed the requirement of KS. The textile type of glass fiber reinforced glulam using resorcinol resin after water and boiling water soaking passed the delamination requirement of KS. The only GFRP reinforced glulam using MPU500H after water soaking passed the delamination requirement of KS. We conclude that the bonding properties of adhesive according to reinforcements are one of the prime factors to determine the bonding performance of the reinforced glulam.

Shear Performance of Glass Fiber Reinforced Glulam Bolted Connection

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권5호
    • /
    • pp.661-671
    • /
    • 2015
  • To evaluate the shear performance of the textile glass fiber and the sheet glass fiber reinforced glulam bolted connections, a tension type shear test was conducted. The average yield shear strength of the bolted connection of reinforced glulam was increased by 12% ~ 31% compared to the non-reinforced glulam. It was confirmed that the shear performance of 5D end distance of the glass fiber reinforced glulam connection corresponds to that of 7D of the non-reinforced glulam connection proposed in building design requirements in various countries. Compared to the non-reinforced glulam, the average shear strength of textile glass fiber reinforced glulam was markedly increased. The non-reinforced glulam and the GFRP reinforced glulam underwent a momentary splitting fracture. However, the failure mode of textile glass fiber reinforced glulam showed a good ductility.

유리섬유 보강적층재의 파괴인성 특성 (Fracture Toughness of Glass Fiber Reinforced Laminated Timbers)

  • 김선호;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권6호
    • /
    • pp.861-867
    • /
    • 2015
  • 유리섬유 보강적층재의 파괴인성을 평가하기 위하여 Compact tension (CT)형 시험을 실시하였다. 보강재는 직물형 유리섬유와 시트형 유리섬유강화플라스틱을 사용하였으며, 보강적층재는 층재사이에 보강재를 삽입 적층하였다. ASTM D5045에 의거하여 CT형 시험편을 제작하였다. 시험편의 길이는 끝면거리를 고려하여 선정하였으며, 인위적인 노치 끝에 볼트구멍(12 mm, 16 mm, 20 mm)을 선공하였다. 시트형 유리섬유강화플라스틱 보강적층재의 파괴인성하중은 보강하지 않은 적층재보다 최대 33% 증가하였으며, 직물형 유리섬유 보강적층재는 최대 152% 증가하였다. 이중외팔보(Double Cantilever Beam)이론에 의한 응력확대계수는 시트형 유리섬유강화플라스틱 보강적층재의 경우 1.08~1.38이었으며, 직물형 유리섬유 보강적층재는 1.38~1.86이었다. 이는 직물형 유리섬유 보강적층재의 경우 유리섬유와 층재의 섬유배열방향이 직교하여 파괴하중으로 인한 목재의 할렬진행을 억제시켰기 때문이다.

유리섬유 조합에 따른 보강 집성재 볼트접합부의 전단강도 특성 (Shear Strength of Reinforced Glulam-bolt Connection by Glass Fiber Combination)

  • 김건호;송요진;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권1호
    • /
    • pp.51-57
    • /
    • 2013
  • 직물형 유리섬유 조합에 따른 보강 집성재의 볼트 접합부 전단 성능을 알아보기 위하여 인장형 전단시험을 실시하였다. 보강재는 직물형 유리섬유로서 유리섬유 배열 형태는 평직형과 능직형을 사용하였다. 보강 집성재는 5층으로 직물형 유리섬유의 삽입 위치와 조합 형태를 달리하여 층재 사이에 삽입 적층시켜 제작하였다. 인장형 전단 시험편은 강판 삽입형로서 끝면거리 7D에 직경 12, 16 mm의 볼트로 접합하였다. 체적비 1% 직물형 유리섬유 보강 집성재의 경우 12 mm 볼트 접합부의 항복 전단내력은 집성재 외층부보다 내층부를 보강한 시험편에서 10% 큰 값을 나타내었다. 체적비 2% 직물형 유리섬유 보강 집성재의 항복 전단내력은 12 mm 볼트 접합부의 경우 각층재 사이에 삽입 적층시킨 시험편이 보강하지 않은 접합부보다 약 22% 향상되었으며, 16 mm 볼트 접합부의 항복 전단내력은 약 20% 향상되었다.

수분산 폴리우레탄의 제조 및 특성 - DMPA 함량의 영향- (Preparation and Properties of Waterborne Polyurethanes - Effect of DMPA content-)

  • Kwak, Yong-Sil;Kim, Young-Hee;Kim, Han-Do
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.21-24
    • /
    • 2001
  • Polyurethane are used for a wide range of commercial applications such as adhesives or coatings for various substrates including textile fabric, plastic, wood, glass fiber, and metals. The types of polyurethane ionomers have been reported according to the ionic charges on the polymer main chain, i.e. anionomer, cationomer, and zwitterconomers. (omitted)

  • PDF

Flexural strength of roller compacted concrete pavements reinforced with glass-roved textiles

  • Madhkhan, Morteza;Nowroozi, Saeid;Torki, Mohammad E.
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.137-160
    • /
    • 2015
  • The one-way (two-way) flexural strength of RCC prisms (circular slabs) reinforced with glass fiber textiles is addressed. To this end, alkaline-resistant glass fiber textiles with three surface weights were used in the composite, the matrix concrete was designed with zero/nonzero slump, and the textiles were used with/without an intermediate layer provided by epoxy resin and sand mortar. Prisms were tested under a four-point loading apparatus and circular slabs were placed on simple supports under a central load. Effects of the amount and geometry of reinforcement, matrix workability, and the intermediate layer on the ultimate load and deflection were investigated. Results revealed that, with a specific reinforcement amount, there is an optimum textile tex for each case, depending on the matrix mix design and the presence of intermediate layer. Similar results were obtained in one-way and two-way bending tests.

유리섬유 코팅사와 탄소섬유를 이용한 일방향 탄소섬유시트 제조공정이 콘크리트 보강에 미치는 영향 (Effect of Unidirectional Carbon Fiber Sheet Manufacturing Process Using Coated Glass Fiber and Carbon Fiber on Concrete Reinforcement)

  • 권지은;권선민;채시현;정예담;김종원
    • 한국염색가공학회지
    • /
    • 제34권3호
    • /
    • pp.185-196
    • /
    • 2022
  • In this study, carbon fiber and coated glass fiber are applied to warp and weft fiber in order to reduce the amount of carbon fiber used in carbon fiber fabrics, which are often used for reinforcement of building structures. A low-cost thermoplastic resin was coated on glass fibers to prepare a shape-stabilizing glass fiber. A unidirectional carbon fiber sheet was manufactured using the prepared coated glass fiber and carbon fiber. In order to identify whether it can be used for reinforcing architectural and civil structures, it was attached to a concrete specimen and its mechanical properties were analyzed. The optimum manufacturing conditions for the coated glass fiber were 0.3 mm in diameter of the coating nozzle, the coating temperature was 190 ℃, and the coating speed was 0.3 m/s. 14 mm was optimal for the weft spacing of the coated glass fiber. The flexural strength of the concrete reinforced with the manufactured unidirectional carbon fiber sheet was slightly lower than that of the concrete reinforced with carbon fiber fabric, but it was confirmed that the reinforcement effect was better when the amount of carbon fiber was considered.

Effect of Acrylonitrile Content on the Glass Transition Temperature and Melt Index of PVC/SAN Blends

  • Liu Wang;Kim Hwan-Chul;Pak Pyong-Ki;Kim Jong-Chun
    • Fibers and Polymers
    • /
    • 제7권1호
    • /
    • pp.36-41
    • /
    • 2006
  • PVC and SAN are often mixed to compensate for the disadvantages of each polymer. Miscibility and thermal stability of PVC/SAN blend were investigated in this study by blending SAN polymer having 20, 24, 28, 32 % of acrylonitrile contents. Two polymers were mixed using a melt blending method with a single screw extruder. DSC thermogram was used to evaluate miscibility of the two polymers. SAN having 24 % of acrylonitrile showed the best miscibility with PVC. In order to evaluate degradation behavior, blended polymer was heat treated in DSC furnace and glass transition temperature was measured consecutively. Glass transition temperature increased continuously with annealing time due to degradation and cross-linking of polymer chains. Melt index of blended polymer was always higher than that of PVC.