• Title/Summary/Keyword: glass fiber reinforcement

Search Result 212, Processing Time 0.031 seconds

Long-term Performance of Fiber Grid Reinforced Asphalt Pavements Overlaid on Old Concrete Pavements (노후 콘크리트포장 위에 덧씌운 섬유그리드 보강 아스팔트포장의 장기공용성)

  • Lee, Ju Myeong;Baek, Seung Beom;Lee, Kang Hoon;Kim, Jo Soon;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.31-43
    • /
    • 2017
  • PURPOSES : The objective of this study is to verify the effect of fiber grid reinforcement on the long-term performance of asphalt pavement overlaid on old concrete pavement by performing field investigation, laboratory test, and finite element analysis. METHODS : The reflection cracking, roughness, and rutting of fiber grid reinforced overlay sections and ordinary overlay sections were compared. Cores were obtained from both the fiber grid reinforced and ordinary sections to measure bonding shear strength between the asphalt intermediate and asphalt overlay layers. Fracture energy, displacement after yield, shear stiffnesses of the cores were also obtained by analyzing the test results. Finite element analysis was performed using the test results to validate the effect of the fiber grid reinforcement on long-term performance of asphalt pavement overlaid on the old concrete pavement. The fatigue cracking and reflection-cracking were predicted for three cases: 1) fiber grid was not used; 2) glass fiber grid was used; 3) carbon fiber grid was used. RESULTS : The reflection-cracking ratio of fiber grid reinforced sections was much smaller than that of ordinary sections. The fiber grid reinforcement also showed reduction effect on rutting while that on roughness was not clear. The reflection-cracking was not affected by traffic volume but by slab deformation and joint movement caused by temperature variation. The bonding shear strength of the fiber grid reinforced sections was larger than that of the ordinary sections. The fracture energy, displacement after yield, and shear stiffnesses of the cores of the fiber grid reinforced sections were also larger than those of the ordinary sections. Finite element analysis results showed that fatigue cracking of glass or carbon fiber grid reinforced pavement was much smaller than that of ordinary pavement. Carbon fiber grid reinforcement showed larger effect in elongating the fatigue life of the ordinary overlay pavement compared to glass fiber grid reinforcement. The binder type of the overlay layer also affected the fatigue life. The fiber grid reinforcement resisted reflection-cracking and the carbon fiber grid showed the greater effect. CONCLUSIONS :The results of field investigation, laboratory test, and finite element analysis showed that the fiber grid reinforcement had a better effect on improving long-term performance of asphalt pavement overlaid on the old concrete pavement.

Evaluation of fitness according to application of glass fiber reinforcement for lower jaw complete denture (하악 총의치 전용의 유리섬유 보강재 적용에 따른 적합도 비교 분석)

  • Kim, Dong-Yeon;Park, Jin-Young;Bae, So-Yeon;Kang, Hoo-Won;Kim, Ji-hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.40 no.4
    • /
    • pp.201-207
    • /
    • 2018
  • Purpose: The purpose of this study is to evaluate the fitness of lower jaw compete denture with glass fiber. Methods: Lower jaw edentulous model was selected as the master model. Ten study models were produced using Type IV stone(n=10). Lower jaw trial dentures were produced by the wax denture base and artificial teeth. Conventional complete denture (CD) group was fabricated by excluding glass fiber reinforcement (n=5). Glass fiber complete denture (GD) group was fabricated with glass fiber reinforcement (n=5). The lower jaw trial complete denture was invested using a plaster. PMMA resin was injected and curing was performed. The CD and GD groups measured the fit using silicone replica technology. The measured data was verified by t-test. Results: The anterior area of the CD group showed the smallest value. There was a statistically significant difference in the anterior area of the CD group and the GD group (p<0.05), but there was no statistically significant difference in the posterior area (p>0.05). Conclusion : Complete denture with glass fiber showed low fitness and further study is needed to apply it clinically.

Fracture Toughness of Glass Fiber Reinforced Laminated Timbers (유리섬유 보강적층재의 파괴인성 특성)

  • Kim, Keon-ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.861-867
    • /
    • 2015
  • The Compact Tension (CT) type test was performed in order to evaluate the fracture toughness performance of glass fiber-reinforced laminated timber. Glass fiber textile and sheet Glass fiber reinforced plastic were used as reinforcement. The reinforced laminated timber was formed by inserting and laminating the reinforcement between laminated woods. Compact tension samples are produced under ASTM D5045. The sample length was determined by taking account of the end distance of 7D, and bolt holes (12 mm, 16 mm, 20 mm) had been made at the end of artificial notches in advance. The fracture toughness load of sheet fiberglass reinforced plastic reinforced laminated timber was increased 33 % in comparison to unreinforced laminated timber while the glass fiber textile reinforced laminated timber was increased 152 %. According to Double Cantilever Beam theory, the stress intensity factor was 1.08~1.38 for sheet glass fiber reinforced plastic reinforced laminated timber and 1.38~1.86 for glass fiber textile reinforced laminated timber, respectively. That was because, for the glass fiber textile reinforced laminated timber, the fiber array direction of glass fiber and laminated wood orthogonal to each other suppressed the split propagation in the wood.

Effect of Fiber Blending on Material Property of Hybrid Fiber Reinforced Concrete (섬유 혼입 비율에 따른 하이브리드 섬유보강 콘크리트의 재료특성)

  • Kim, Hag-Youn;Seo, Ki-Won;Lee, Wok-Jae;Kim, Nam-Ho;Park, Choon-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.345-348
    • /
    • 2004
  • In this study, an effect of fiber blending on material property of hybrid fiber reinforced concrete (HFRC) was evaluated. Also, optimized association and the mixing rate of fiber for HFRC was determined. Test result shows, in the case of mono fiber reinforced concrete, use of steel fiber in concrete caused increment in tensile and bending strength as the blended ratio increases, while use of carbon fiber and glass fiber caused increment in compressive strength. Use of hybrid fiber reinforcement in concrete caused a significant influence on its fracture behavior; consequently, caused increase by mixing rate of steel fiber and contributed by carbon fiber, glass fiber, celluloid fiber in reinforcement effect in order.

  • PDF

Effect of Reinforcement of Glass fiber on Auto and Heat polymerized denture base resin (유리 섬유의 첨가에 따른 자가중합 및 열중합 의치상용 레진의 강화효과)

  • Yu, Sang-Hui;Kim, Yeoun-Soo;Choi, Un-Jae;Jun, Jong-Nam
    • Journal of Technologic Dentistry
    • /
    • v.31 no.4
    • /
    • pp.37-43
    • /
    • 2009
  • This study evaluated the effect of concentration of glass fiber reinforcement on the flexural properties of auto and heat polymerized denture base resin. The test specimens($64{\times}10{\times}3.3mm$) were made of auto and heat polymerized resin(Vertex, Dentimax, Netherlands). Glass fiber(ER 270FW, Hankuk Fiber Glass, Korea) were used to reinforce the denture base resin. The 2.6%, 5.3% and 7.9% volume pre-impregnated fiber were located at the bottom of specimen. The test specimens(n=7) of each group were stored in distilled water at $37^{\circ}C$ for 50 hours before test. The flexural strength and modulus were measured by an universal testing machine(Z020, Zwick, Germany) at a crosshead speed of 5 mm/min in a three-point bending mode. The data was analyzed by one-way ANOVA and the Duncan's multiple range test(${\alpha}$=0.05). The difference of auto polymerized resin groups and heat polymerized resin groups were statistically analyzed by t-test(${\alpha}$=0.05). Glass fiber showed significant reinforcing effects on auto and heat polymerized resin. For flexural strength and modulus, auto polymerized resin was the highest in 7.9% volume, while heat polymerized resin was the highest in 5.3% volume. In this study, glass fiber at 7.9% volume ratio showed most effective reinforcing effect on auto polymerized resin and glass fiber at 5.3% volume ratio showed most effective reinforcing effect on heat polymerized resin in terms of flexural strength and flexural modulus.

  • PDF

Glass FRP-Bonded RC Beams under Cyclic Loading

  • Tan, Kiang-Hwee;Saha, Mithun-Kumar
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.45-55
    • /
    • 2007
  • Ten beams bonded with glass fiber reinforced polymer (GFRP) laminates were tested under cyclic loading with the load range and the FRP reinforcement ratio as test parameters. The maximum load level during cyclic loading was 55%, 65% and 75% of the static flexural strength while the minimum load level was kept constant at 35%. Deflections of the beams at the end of 525000 cycles were found to increase by 16% and 44% when the maximum load level was increased from 55% to 65% and 75% of the static flexural strength, respectively. Beams with FRP reinforcement ratios of 0.64% and 1.28% were found to exhibit lesser deflections of about 15% and 20%, respectively, compared to a similar beam without FRP reinforcement. An analytical approach based on cycle-dependent effective moduli of elasticity of concrete and FRP reinforcement is presented and found to predict the deflections of the test beams well.

Mechanical Properties of Hybrid FRP Rebar (하이브리드 FRP 리바의 역학적 특성)

  • 박찬기;원종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.58-67
    • /
    • 2003
  • Over the last decade fiber-reinforced polymer (FRP) reinforcement consisting of glass, carbon, or aramid fibers embedded in a resin such as vinyl ester, epoxy, or polyester has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. But reinforcing rebar for concrete made of FRP rebar has linear elastic behavior up to tensile failure. For safety a certain plastic strain and an elongation greater than 3% at maximum load is usually required for steel reinforcement in concrete structures. The same should be required for FRP rebar. Thus, the main object of this study was to develop new type of hybrid FRP rebar Also, this study was evaluated to the mechanical properties of Hybrid FRP rebar. The Manufacture of the hybrid FRP rebar was achieved by pultrusion, and braiding and filament winding techniques. Tensile and interlaminar shear test results of Hybrid FRP rebar can provide its excellent tensile strength-strain behavior and interlaminar stress-strain behavior.

Flexural strength of roller compacted concrete pavements reinforced with glass-roved textiles

  • Madhkhan, Morteza;Nowroozi, Saeid;Torki, Mohammad E.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.137-160
    • /
    • 2015
  • The one-way (two-way) flexural strength of RCC prisms (circular slabs) reinforced with glass fiber textiles is addressed. To this end, alkaline-resistant glass fiber textiles with three surface weights were used in the composite, the matrix concrete was designed with zero/nonzero slump, and the textiles were used with/without an intermediate layer provided by epoxy resin and sand mortar. Prisms were tested under a four-point loading apparatus and circular slabs were placed on simple supports under a central load. Effects of the amount and geometry of reinforcement, matrix workability, and the intermediate layer on the ultimate load and deflection were investigated. Results revealed that, with a specific reinforcement amount, there is an optimum textile tex for each case, depending on the matrix mix design and the presence of intermediate layer. Similar results were obtained in one-way and two-way bending tests.

Seismic capacity of brick masonry walls externally bonded GFRP under in-plane loading

  • Wang, Quanfeng;Chai, Zhenling;Wang, Lingyun
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.413-431
    • /
    • 2014
  • By carrying out the experiment of eight pieces of brick masonry walls with pilaster strengthened by Glass fiber reinforced polymer (GFRP) and one piece of normal masonry wall with pilaster under low reversed cyclic loading, the failure characteristic of every wall is explained; Seismic performances such as hysteresis, stiffness and its degeneration, deformation, energy consumption and influence of some measures including strengthening means, reinforcement area proportion between GFRP and wall surface, "through-wall" anchor on reinforcement effects are studied. The test results showed that strengthening modes have little influence on stiffness, stiffness degeneration and deformation of the wall, but it is another thing for energy consumption of the wall; The ultimate load, deformation and energy consumption of the walls reinforced by glass fiber sheets was increased remarkably, rigidity and its degeneration was slower; Seismic performance of the wall which considers strengthening means, reinforcement area proportion between GFRP and wall surface, "through-wall" anchor at the same time is better than under the other conditions.

Reinforcement Performance Evaluation Experiment Research of RC Structure Which High Strength Clear Glass Fiber Panel was Used (고강도 투명 유리섬유 패널을 이용한 RC구조물의 보강 성능평가 실험 연구)

  • Kang, In-Seok;Lee, Han-Seung;Lee, Ok-Sin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.121-124
    • /
    • 2005
  • The existing reinforcement methods of construction are the actual condition without the method of checking exact injection of adhesives clearly by the opacity of reinforcement material. In this study, in order to solve such a problem, the high strength transparent panel using a glass fiber is developed and in order to examine reinforcement effect of a panel clearly, the structure performance evaluation experiment was conducted. As a result, we knew that it can check with the naked eye the injection process of adhesives and reinforcement effect was also observable.

  • PDF