• Title/Summary/Keyword: glass fiber composite

Search Result 730, Processing Time 0.03 seconds

Long-term Ring Deflection Prediction of GFRP Pipe in Cooling Water Intake for the Nuclear Power Plant (원전 냉각수 취수용 GFRP관의 장기관변형 예측)

  • Kim, Sun-Hee;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • Recently, underground pipes are utilized in various fields of applications such as sewer lines, drain lines, water mains, gas lines, telephone and electrical conduits, culverts, oil lines, etc. Most of pipes are installed for long-term purposes and they should be safely installed in consideration of installation conditions because there are unexpected various terrestrial loading conditions. In this paper, we present the result of investigation pertaining to the structural behavior of glass fiber reinforced thermosetting polymer plastic (GFRP) flexible pipes buried underground. The mechanical properties of the GFRP flexible pipes produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, ring deflection is measured by the field tests and the finite element analysis (FEA) is also conducted to simulate the structural behavior of GFRP pipes buried underground. From the field test results, we predicted long-term, up to 50 years, ring deflection of GFRP pipes buried underground based on the method suggested by the existing literature. It was found that the GFRP flexible pipe to be used for cooling water intake system in the nuclear power plant is appropriate because 5% ring deflection limitation for 50 years could be satisfied.

Miniature Jumping Robot Using SMA Coil Actuators and Composite Materials (형상기억합금 코일 구동기와 복합재를 이용한 소형 도약 로봇 설계 및 제작)

  • Jung, Sun-Pill;Koh, Je-Sung;Jung, Gwang-Pil;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.136-142
    • /
    • 2013
  • In nature, many small insects are using jumping as a survival strategy. Among them, fleas jump in a unique method. They use an elastomer, 'Resilin', an extensor muscle and a trigger muscle. By contracting the extensor muscle, the elastic energy, that makes a flea to jump, is stored in the resilin. After storing energy, the trigger muscle begins contracting and pulling the extensor muscle. When the extensor muscle crosses the rotational joint, direction of torque generated from the extensor muscle reverses, 'torque reversal mechanism'. Simultaneously, the elastic energy stored in the resilin releases rapidly and is converted into the kinetic energy. It makes a flea to jump 150 times its body length. In this paper, miniaturized jumping robot using flea-inspired catapult mechanism is presented. This mechanism is based on the 4-bar linkage and the reversal joint and is actuated by Shape Memory Alloy (SMA) coiled springs describing the flea's muscle. The robot prototype is fabricated by SCM process using glass fiber prepregs and a sheet of polyimide film. The prototype is 20mm link length, 34mm width and 2.0g weight and can jump 103cm.

Results of Delamination Tests of FRP- and Steel-Plate-Reinforced Larix Composite Timber

  • LEE, In-Hwan;SONG, Yo-Jin;SONG, Da-Bin;HONG, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.655-662
    • /
    • 2019
  • This study evaluated the multi-bonding performances of timbers as well as those of reinforcement and timber to obtain data for preparing guidelines regarding the use of timbers as large structural members. For the multi-bonding performances of timbers, four types of bonding surfaces were prepared according to the pith position. For the bonding performances of FRP (fiber-reinforced plastic)/steel plate and timber, a total of 11 types of specimens were produced for the selection of the appropriate adhesive. The bonding performances of the produced specimens were evaluated through a water soaking delamination test, a water boiling delamination test, and a block shear strength test. The test results showed that the bonding strength of the bonding surface according to the pith position was highest in the specimen for which the two sections with the pith at the center of the cross-section on timber and between the bonding surfaces (the tangential and radial sections were mixed) were bonded. Furthermore, the specimens for which the section (radial section) with the pith on the bonding surface of the timber was bonded showed a high delamination percentage. The results of the block shear strength test showed that the bonding section did not have a significant effect on the shear strength, and that the measured wood failure percentage was higher than the KS standard value. The PVAc adhesive showed the highest bonding strength between larix timber and GFRP (glass FRP). Furthermore, the epoxy and polyurethane adhesives showed good bonding strength for CFRP (carbon FRP) and structure steel, respectively.

UV-Curing System for the Filament Winding of Large Diameter Pipe (대구경 파이프용 필라멘트 와인딩을 위한 UV 경화시스템)

  • Choi, Jae-Wan;Kim, Se-Il;Chung, Yong-Chan;Chun, Byaung-Chul
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.245-253
    • /
    • 2010
  • Optimum conditions for UV-radiated photopolymerization of unsaturated polyester that could be used as protecting layer of large diameter pipe were investigated in this paper. UV photopolymerization method was selected to solve the problems, arising when thermal polymerization by organic peroxide was used, such as the instability of peroxide initiator, the evolution of volatile organic compound, and thermal deformation of product. Two of the photo-initiators (Irgacure 819 and Darocure 1173) well known for its penetrating ability deep into the polymer layer were selected, and the optimum conditions for photopolymerization (1.5 phr initiator content, 1:1.2 initiator ratio, Ga lamp for UV source) were found from the thermal and mechanical test results of the resultant UP polymers. In addition, composite materials containing UP polymer and glass fiber were tested for hardness, impact strength, and flexural strength to find that the impact strength of composite significantly improved.

Retrospective clinical and radiographic evaluation of restored endodontically treated teeth

  • Paula Pontes Garcia ;Aline Cappoani ;Ricardo Susin Schelbauer ;Gisele Maria Correr ;Carla Castiglia Gonzaga
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.49.1-49.11
    • /
    • 2020
  • Objectives: The aim of this study was to perform a clinical and radiographic analysis of endodontically treated teeth (ETT) restored with cast metal posts (CMPs) or prefabricated glass fiber posts (GFPs) and crowns. Materials and Methods: Fifty ETT were restored with 25 CMPs and 25 GFPs at a private dental clinic between 2001 and 2016. The restorations consisted of 12 all-ceramic crowns, 31 metal-ceramic crowns, and 7 composite resin crowns. Demographic data, type of teeth, type of post-and-core system, time of placement, crown restorations, the number of proximal contacts, the type of antagonist, and reports of any complications after post-and-core placement were recorded for each patient. Assessments were performed at baseline (radiographic) and follow-up (radiographic and clinical). Data were analyzed by the McNemar test, the Pearson χ2 test, and Kaplan-Meier survival curves (α = 0.05). The mean follow-up was 67.6 months. Results: No significant difference was observed for any of the radiographic parameters when the baseline and final radiographs were compared. In the clinical evaluation, anatomical form (p = 0.009) and occlusion (p = 0.001) showed significant differences according to the type of crown restoration; specifically, metal-ceramic and all-ceramic crowns outperformed composite resin crowns. Conclusions: CMPs and GFPs showed favorable results for restoring ETT after 6 years of follow-up. All-ceramic and metal-ceramic crowns showed higher survival rates and better clinical outcomes.

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.

Fabricaton of PEMFC separators with conducting polymer composites by injection molding process and evaluation of moldability and electrical conductivity of the separators (전도성 복합재료를 이용한 PEMFC용 separator 사출성형 제조 및 전기전도성 평가)

  • Yoon, Yong-Hun;Lim, Seung-Hyun;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1361-1366
    • /
    • 2010
  • This research aims to develop polymer composites which can be used for PEMFC separators by injection molding process. Considering the moldability and stiffness, we used PPS(Poly(phenylene sulfide)) and PP(Polypropylene) as base resin. In order to improve electrical conductivity and physical properties, we chose glass fiber, carbon fiber, carbon black, and both expanded graphite and synthetic graphite. The 3 type composites are prepared for injection molding of PEMFC separators. and CAE(Computer Aided Engineering) analysis was conducted to optimize injection processing parameters(injection pressure, heat time, mold temperature etc.). We did successfully fabricate the separators by injection molding, and measure the electrical conductivity of the samples by using four point probe device. Conclusively, PP/SG/CB composite showed better both electrical conductivity and moldability than the others.

Seismic performance of a fiber-reinforced plastic cable-stayed bridge

  • Hodhod, Osama A.;Khalifa, Magdi A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.399-414
    • /
    • 1997
  • This paper presents an investigation into the seismic response characteristics of a proposed ligh-weight pedestrian cable-stayed bridge made entirely from Glass Fiber Reinforced Plastics(GFRP). The study employs three dimensional finite element models to study and compare the dynamic characteristics and the seismic response of the GFRP bridge to a conventional Steel-Concrete (SC) cable-stayed bridge alternative. The two bridges were subjected to three synthetic earthquakes that differ in the frequency content characteristics. The performance of the GFRP bridge was compared to that of the SC bridge by normalizing the live load and the seismic internal forces with respect to the dead load internal forces. The normalized seismically induced internal forces were compared to the normalized live load internal forces for each design alternative. The study shows that the design alternatives have different dynamic characteristics. The light GFRP alternative has more flexible deck motion in the lateral direction than the heavier SC alternative. While the SC alternative has more vertical deck modes than the GFRP alternative, it has less lateral deck modes than the GFRP alternative in the studied frequency range. The GFRP towers are more flexible in the lateral direction than the SC towers. The GFRP bridge tower attracted less normalized base shear force than the SC bridge towers. However, earthquakes, with peak acceleration of only 0.1 g, and with a variety of frequency content could induce high enough seismic internal forces at the tower bases of the GFRP cable-stayed bridge to govern the structural design of such bridge. Careful seismic analysis, design, and detailing of the tower connections are required to achieve satisfactory seismic performance of GFRP long span bridges.

The effect of a diode laser and traditional irrigants on the bond strength of self-adhesive cement

  • Tuncdemir, Ali Riza;Yildirim, Cihan;Ozcan, Erhan;Polat, Serdar
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.457-463
    • /
    • 2013
  • PURPOSE. The purpose of this study was to compare the effect of a diode laser and traditional irrigants on the bond strength of self-adhesive cement. MATERIALS AND METHODS. Fifty-five incisors extracted due to periodontal problems were used. All teeth were instrumented using a set of rotary root canal instruments. The post spaces were enlarged for a No.14 (diameter, 1.4 mm) Snowlight (Abrasive technology, OH, USA) glass fiber reinforced composite post with matching drill. The teeth were randomly divided into 5 experimental groups of 11 teeth each. The post spaces were treated with the followings: Group 1: 5 mL 0.9% physiological saline; Group 2: 5 mL 5.25% sodium hypochlorite; Group 3: 5 mL 17% ethylene diamine tetra acetic acid (EDTA), Group 4: 37% orthophosphoric acid and Group 5: Photodynamic diode laser irradiation for 1 minute after application of light-active dye solution. Snowlight posts were luted with self-adhesive resin cement. Each root was sectioned perpendicular to its long axis to create 1 mm thick specimens. The push-out bond strength test method was used to measure bond strength. One tooth from each group was processed for scanning electron microscopic analysis. RESULTS. Bond strength values were as follow: Group 1 = 4.15 MPa; Group 2 = 3.00 MPa; Group 3 = 4.45 MPa; Group 4 = 6.96 MPa; and Group 5 = 8.93 MPa. These values were analysed using one-way ANOVA and Tukey honestly significant difference test (P<.05). Significantly higher bond strength values were obtained with the diode laser and orthophosphoric acid (P<.05). There were no differences found between the other groups (P> .05). CONCLUSION. Orthophosphoric acid and EDTA were more effective methods for removing the smear layer than the diode laser. However, the diode laser and orthophosphoric acid were more effective at the cement dentin interface than the EDTA, Therefore, modifying the smear layer may be more effective when a self-adhesive system is used.

Effects of Molding Condition on Surface Unevenness of GFRP Composites in Compression Molding (GFRP 복합재료의 압축성형에서 표면요철에 미치는 성형조건의 영향)

  • Kim, Hyoung-Seok;Kim, Jin-Woo;Kim, Yong-Jae;Lee, Dong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1649-1657
    • /
    • 2010
  • We have investigated the unexpected phenomena on the surface of molded GFRP composites. The major cause of the unevenness, as a result of which the surface becomes rough, is a shrinking of the matrix in the process of holding pressure and cooling temperature. The higher holding pressure load in a molding process and the lower demolding temperature in an annealing experiment, the better GFRP composites moldings improved its appearance. In addition, by taking the holding pressure and demolding temperature into consideration, we evaluate the process that causes the surface unevenness and the variation in the fiber projection height.