• Title/Summary/Keyword: girders

Search Result 760, Processing Time 0.021 seconds

A Study on the Modal Parameters for Cable System of Bridge (교량 케이블시스템의 모드변수에 관한 연구)

  • Lee, Hyunchol;Jo, Yeong-hoon;Kim, Jinsoo;Park, Kyoungho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.48-59
    • /
    • 2019
  • In recent years, the type of bridge where cables such as suspension bridge and cable-stayed bridge are the main factors in the construction of long-range bridges has been soaring. The effects of cables on these structures are very large, and for structural analysis, it is necessary to study the cable and the structural changes according to the mode characteristics of the cables. In particular, cables are directly connected to camber adjustment, which conveys load effects on girders to tower, and are important components in the overall structure, and since the initial tension on the construction is compared with the tension over time, this study was conducted to help identify the condition of the bridge's aging and abnormalities. Therefore, in this study, the characteristics of the mode from the mode analysis through the impact hammer to the mass of the cable and the change in the length of the cable are analyzed.

Finite Element Analysis of the Reinforced Concrete Boundary-Beam-Wall System Subjected to Axial Load (축하중이 작용하는 RC 경계보-벽체 시스템의 해석적 평가)

  • Son, Hong-Jun;Kim, Seung-Il;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • In Korea, one of the most used structural systems for residential apartment buildings is the combination of the reinforced concrete (RC) wall and rahmen structures in the upper and lower floors, respectively. To alleviate the significant difference between the stiffnesses of these two structural systems, large transfer girders are generally required in the transition zone of the structure, which then results in the use of large amounts of construction materials and low economic feasibility. This paper proposes a new RC boundary-beam-wall system that can minimize the disadvantages of the RC transfer girder system. The structural performance of the proposed system subjected to axial loading was evaluated via rigorous three-dimensional nonlinear finite element analysis. Four parameters, namely the ratio of lower wall to upper wall lengths, distance between stirrups, main bar slope ratio, and slab length, were considered in the finite element analysis, and their effects on the maximum axial load were analyzed and discussed.

Analysis on Long Term Behavior in 120-Story High-Rise Buildings according to Lateral-Load-Resisting Systems (120층 규모 초고층 건물에 대한 횡력저항시스템 적용에 따른 장기거동 분석)

  • Kim, Gyeong-Chan;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.119-129
    • /
    • 2022
  • It is essential to control the lateral displacement and differential axial shortening of the vertical elements in high-rise buildings. The differential axial shortening can cause challenges in the serviceability and safety of non-structural and structural elements, respectively. Hence, in this study, the differential axial shortening of the vertical elements and effects of long term behaviors of concrete are analyzed in 120-story high-rise buildings via the construction sequence analysis. Consequently, the axial shortening of the vertical elements is classified into elastic, creep, and shrinkage shortening, and dominant factors to the maximum axial shortening are analyzed. In addition, the serviceability of the non -structural elements is checked with a differential axial shortening at 30 years after completion of construction, and member forces at design and construction stages in girders and outrigger walls are compared.

Structural Performance Evaluation on Ended Block of Wide Flange PSC Girder for the Semi-Integral Bridges (광폭 플랜지 PSC 거더 단부 프리캐스트 블록을 활용한 반일체식교대교량의 구조성능 평가)

  • Ka, Hoon;Choi, Jin-Woo;Kim, Young-Ho;Park, Jong-Myen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Semi-integral abutment bridges are a type of integral abutment bridges. These bridges eliminate expansion joints on the structure and can be used in situations not suitable for full-integral abutment bridge. Moreover, Semi-integral bridges have excellent maintenance and can be economically constructed. This study is about precast wall-type blocks at each end which provide lateral support for PSC girder, as well as acting as retaining walls to resist longitudinal movement of semi-integral abutment bridge. The end-diaphragm connection between ended blocks of PSC girders can be achieved by in-suit nonshrinkage concrete. The results show that 3-point experiment of end-diaphragm beam have an acceptable performance which is so better than results of structural design. Moreover, the effects of backfill soil on semi-integral abutment bridge constructed are analyzed the behavior according to the temperature changes.

Numerical performance assessment of Tuned Mass Dampers to mitigate traffic-induced vibrations of a steel box-girder bridge

  • Bayat, Elyas;Bayat, Meysam;Hafezzadeh, Raheb
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.125-134
    • /
    • 2021
  • In this paper, the effects of Tuned Mass dampers (TMDs) on the reduction of the vertical vibrations of a real horizontally curved steel box-girder bridge due to different traffic loads are numerically investigated. The performance of TMDs to reduce the bridge vibrations can be affected by the parameters such as dynamic characteristics of TMDs, the location of TMDs, the speed and weight of vehicles. In the first part of this study, the effects of mass ratio, damping percentage, frequency ratio, and location of TMDs on the performance of TMDs to decrease vertical vibrations of different sections of bridge deck are evaluated. In the second part, the performance of TMD is investigated for different speeds and weights of traffic loads. Results show that the mass ratio of TMDs is the more effective parameter in reducing imposed vertical vibration in comparison with the damping ratio. Furthermore, it is found that TMD is very sensitive to its tuned frequency, i.e., with a little deviation from a suitable frequency, the expected performance of TMD significantly decreased. TMDs have a positive and considerable performance at certain vehicle speeds and this performance declines when the weight of traffic loads is increased. Besides, the results reveal that the highest impact of TMD on the reduction of the vertical vibrations is when free vibrations occur for the bridge deck. In that case, maximum reductions of 24% and 59% are reported in the vertical acceleration of the bridge deck for the forced and free vibration amplitudes, respectively. The maximum reduction of 13% is also obtained for the maximum displacement of the bridge deck. The results are mainly related to the resonance condition.

Structural Health Monitoring System for Large-Bridge-Based LoRa LPWAN (LoRa LPWAN 기반의 대형 교량 구조건전성 모니터링 시스템)

  • Jin-Oh Park;Ki-Don Kim;Kyung-soo Kim;Sang-Heon Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.49-56
    • /
    • 2023
  • With the development of technology worldwide, bridges are becoming larger, and the number of old bridges is also rapidly increasing. Monitoring the structural health of large, aging bridges is essential to preventing large-scale accidents. In this study, the application of a LoRa low-power wide-area network (LPWAN)-based wireless measurement system was investigated, and a LoRa wireless measurement system was established in the cable-stayed bridge section of Cheonsa Bridge, located in Shinan-gun, Jeollanam-do, Korea. The applicability of the LoRa LPWAN-based wireless monitoring system to large marine bridges was reviewed by comparing the performance and economic feasibility with wire-based monitoring systems that were built and operated by establishing a measurement system for the pylons, cables, and reinforcing girders of the bridge.

Hot Spot Stress of Concrete-filled Circular Hollow Section N-joints Subjected to Axial Loads (축하중을 받는 콘크리트 충전 원형 강관 N형 이음부의 핫스폿 응력 특성)

  • Kim, In-Gyu;Chung, Chul-Hun;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.113-120
    • /
    • 2010
  • The use of Concrete filled circular hollow steel section (CFCHS) members in bridge design is a relatively new concept. The most important part of the design and durability of such structures is the design and the construction of the joints. In the design of recently constructed steel-concrete composite bridges using CFCHS truss girders for the main load carrying structure, the fatigue verification of the tubular spatial truss joints was a main issue. Welded CFCHS joints are very sensitive to fatigue because the geometric discontinuities of the welds lead to a high stress concentration. New research done on the fatigue behaviour of such joints has focused on CFCHS N-joints, directly welded, with finite element analysis method. A commercial software, ABAQUS, is adopted to perform the finite element analysis on the N-joints. This paper is main focused on these topics, including hot spot stress.

Assessment for Extending Span Ranges of PSC Girder Bridges : I. Proposed Strategy to Estimate the Spans (PSC 거더교의 장경간화 평가 기법 : I. 경간 평가 기법의 제안)

  • Jeon, Se Jin;Choi, Myoung Sung;Kim, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.235-241
    • /
    • 2009
  • PSC girder bridge is known to be more economical than other types of bridges and has been usually applied to a span range of 25 m to 35 m according to the standard shapes for highway bridges in Korea. The spans of the recently developed new types of PSC girders are also limited to 50 m at most. In this study, therefore, feasibility of the long-span PSC girder that reaches more than 50 m is investigated by applying several strategies from the perspectives of materials, design and construction. A systematic procedure is proposed that can be used to assess the effect of each strategy on the span. The proposed scheme adopts a graphical approach that represents a relationship between the number of prestressing tendons and the span, and is derived on a basis of safety assessment equations of the girder in each stage of fabrication and in service. In the companion paper, the amount of span extension is quantitatively evaluated by applying the proposed scheme into a sample PSC girder bridge.

Redundancy Evaluation of the Composite Two Steel Plate-Girder Bridges (강합성 플레이트 2-거더교의 여유도 평가)

  • Park, Yong-Myung;Joe, Woom-Do-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.611-620
    • /
    • 2006
  • The composite two plate-girder bridges are generally defined as a non-redundant load path structure because the bridge can collapse if one of the two girders is seriously damaged by a fatigue crack. In this paper, a numerical study on the evaluation of the after-fracture redundancy of the composite two-girder bridges was accomplished. The evaluation has been performed on the simple and three-span continuous bridges with I-section cross beams which serve as transverse bracing, and with or without the bottom lateral bracing system. The load carrying capacities of the intact and damaged bridges with or without lateral bracing were evaluated from material and geometric nonlinear analysis, respectively and the redundancy was evaluated for each case. It was acknowledged from the analytical results that both simple and continuous intact two-girder bridges have sufficient redundancy even without lateral bracing, but it takes an important role to improve the redundancy of damaged bridges.

A Study of Static Behavior of FRP Bridge Deck Concerning Connection Condition (FRP바닥판의 연결조건에 따른 정적거동 분석)

  • Yong, Hwan Sun;Hwang, Yoon Koog;Kyung, Kab Su;Park, Yong Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.597-604
    • /
    • 2006
  • Fiber Reinforced Polymer (FRP) is a relatively new material in the bridge construction. With high strength to weight ratios, excellent durability, and low life-cycle costs of FRP, FRP bridge decks can offer a low dead load, reduced maintenance, and long service life. Due to the lightweight of FRP, if existing concrete decks can be replaced with the FRP decks, the load carrying capacity of superstructure can be increased without strengthening of girders. In this study, we have conducted an experiment on 7 cases of connection conditions with steel girder by using bolts considering a rational and economical method of connection and compared with the results of FEM analysis. From the experimental result, if the bolts are strong enough to resist shear force between the FRP bridge deck and the steel girder, it will be structurally secure to use the zigzag method.