• Title/Summary/Keyword: girders

Search Result 760, Processing Time 0.02 seconds

Post-Damage Repair of Prestressed Concrete Girders

  • Ramseyer, Chris;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.199-207
    • /
    • 2012
  • Concrete is an economical construction material and for that reason it is widely used in buildings and infrastructures. The use of deicing salts, expansion joint failure, and freeze-thaw cycles have led to concrete bridge girders experiencing corrosion of steel reinforcement and becoming unsafe for driving. The goal of this research is to assess the effectiveness of current and possible repair techniques for the end region of damaged prestressed concrete girders. To do this, three American Association of State Highway and Transportation prestressed concrete girders were tested to failure, repaired, and retested. Three different repair materials were tested including carbon fiber, glass fiber, and surface mounted rods. Each different repair material was also tested with and without injected epoxy. Comparisons were then made to determine if injecting epoxy had a positive effect on stiffness and strength recovery as well as which repair type regained the largest percentage of original strength.

A Study on the Static Behavior of PSC Bridge Decks (PSC 바닥판의 정적거동특성에 관한 연구)

  • 주봉철;김영진;이정우;김병석;박성용;이필구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.519-524
    • /
    • 2002
  • The long span PSC deck of composite girder bridge should be needed in order to improve the endurance and to simplify the structure of the steel bridge. However, there have been few domestic research activities about long-span PSC decks for the steel bridges with a small number of girders. In this study, a literature survey is performed to develop a new deck system for the steel bridge with a small number of girders. By considering the characteristics of a small number of girders bridge system, a cast-in-place long span PSC deck is proposed for a small number of girders bridges. To examine structural behavior and safety of the proposed PSC deck, the real scale partial models of the deck(12m$\times$3.2m) are tested under the static loading. In the test, the failure mode and behavior of each specimen, and ultimate load carrying capacity of the proposed PSC deck are identified.

  • PDF

Analysis of the Composite Section in PSC-Steel Hybrid Girder (PSC-강 혼합거더의 연결부 거동 해석)

  • Kim Kwang Soo;Jung Kwang Hoe;Shim ChungWook;Yoo Sung Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.766-769
    • /
    • 2004
  • This paper presents 3D nonlinear analysis considering the slip of composite section as well as the static load tests of PSC-Steel hybrid girders. According to the slip modulus, the nonlinear analysis shows that the behavior of hybrid girders could be divided into three parts as full-composite, partial-composite and non-composite. However, the experimental results show that the PSC-Steel hybrid girders with shear connectors take the part of partial composite action in ultimate load stage. In addition, the load test results give that stud shear connectors and welded reinforcements have contributed to improve the ultimate strength of hybrid girders for about $20\%$.

  • PDF

Ultimate and fatigue response of shear dominated full-scale pretensioned concrete box girders

  • Saiidi, M. Saiid;Bush, Anita
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.353-367
    • /
    • 2006
  • Two full-scale, precast, pretensioned box girders were subjected to shear-dominated loading, one under monotonic loads to failure and the other subjected to one-half million cycles of fatigue loads followed by monotonic ultimate loads. The number of cycles was selected to allow for comparison with previous research. The fatigue loads were applied in combination with occasional overloads. In the present study, fatigue loading reduced the shear capacity by only six percent compared to the capacity under monotonic loading. However, previous research on flexure-dominated girders subjected to the same number of repeated loads showed that fatigue loading changed the mode of failure from flexure to shear/flexure and the girder capacity dropped by 14 percent. The comparison of the measured data with calculated shear capacity from five different theoretical methods showed that the ACI code method, the compression field theory, and the modified compression field theory led to reasonable estimates of the shear strength. The truss model led to an overly conservative estimate of the capacity.

Behavior of CFRP strengthened RC multicell box girders under torsion

  • Majeed, Abeer A.;Allawi, Abbas A.;Chai, Kian H.;Badaruzzam, Hameedon W. Wan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.397-406
    • /
    • 2017
  • The use of fiber reinforced polymer (FRP) for torsional strengthening of reinforced concrete (RC) single cell box beams has been analyzed considerably by researchers worldwide. However, little attention has been paid to torsional strengthening of multicell box girders in terms of both experimental and numerical research. This paper reports the experimental work in an overall investigation for torsional strengthening of multicell box section RC girders with externally-bonded Carbon Fiber Reinforced Polymer CFRP strips. Numerical work was carried out using non-linear finite element modeling (FEM). Good agreement in terms of torque-twist behavior, steel and CFRP reinforcement responses, and crack patterns was achieved. The unique failure modes of all the specimens were modeled correctly as well.

Spliced Two Span Bridge with the U-Type Precast Girders by Using the Secondary Moment (2차 모멘트를 이용한 U형 프리캐스트 거더의 연속화)

  • 이환우;조은래;김광양
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.193-200
    • /
    • 1998
  • The precast prestressed concrete girders of I-type section are frequently employed to design the short-to-medium span bridge. However, its beam depth is greatly increased as its span length is increased over than about 30m. Therefore, the economic and aesthetic effectiveness are rapidly decreased in case of the span length over 30m. The purpose of this paper is to verify the structural safety on the new spliced two span bridge and analyze the variation of member forces and stress distribution according to the construction stages and time. The new spliced technique is performed by partial post tensioning and release in the U-type girders. The structural characteristics of this technique is the introduction of secondary moment to reduce the bending moment by self weight of precast U-type girders constructed in simply supported beam type. So, it is expected that the structural efficiency of this spliced bridge may be improved more than other techniques.

  • PDF

A Study on the Buckling Behavior of the Web of Box Girders (상자형 복부판의 좌굴 거동에 관한 연구)

  • 이상우;권영봉
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.27-34
    • /
    • 1995
  • Elastic and in-elastic buckling stress analyses are executed by the semi-analytical finite strip method to study the effect of the longitudinal stiffener on the web of box girders. The simple analysis procedure is based on the assumption that the vertical stiffeners has the rigidity enough to force nil deflection line on the web panel so that the boundary condition may be regarded as a hinge. The provisions on the longitudinal stiffeners in plate girders of the Korean Standard Highway Bridge Specifications(1992) are investigated through comparison with the results obtained for various web stiffener size of box girders of the medium span length bridges.

  • PDF

Development of Acceleration-PZT Impedance Hybrid Sensor Nodes Embedding Damage Identification Algorithm for PSC Girders

  • Park, Jae-Hyung;Lee, So-Young;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, hybrid smart sensor nodes were developed for the autonomous structural health monitoring of prestressed concrete (PSC) girders. In order to achieve the objective, the following approaches were implemented. First, we show how two types of smart sensor nodes for the hybrid health monitoring were developed. One was an acceleration-based smart sensor node using an MEMS accelerometer to monitor the overall damage in concrete girders. The other was an impedance-based smart sensor node for monitoring the local damage in prestressing tendons. Second, a hybrid monitoring algorithm using these smart sensor nodes is proposed for the autonomous structural health monitoring of PSC girders. Finally, we show how the performance of the developed system was evaluated using a lab-scaled PSC girder model for which dynamic tests were performed on a series of prestress-loss cases and girder damage cases.

Stability limit state design of box sections supporting mining and process facilities

  • Bedair, Osama
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.643-659
    • /
    • 2011
  • The design of box girders requires the determinations the buckling stress of the flange and the webs. Existing design equations available in codes of practice ignore the interactions between the box girder components. The paper illustrates the influence of the geometric interaction on the buckling stress of box girders. Generalized equations are first derived in terms of the web the flange geometric properties. Industrial examples are then presented showing the variation of the flange buckling stress for various stiffening configurations. The influence of the flange/web proportions on the buckling stress of box girder components is also highlighted. It is shown that buckling strength of the flange is largely affected by the restraints imposed by the webs or attached diaphragms. Graphs are presented showing various limiting states of box girders. These graphs are useful to use in practice in order to achieve economical and efficient design of box girders and rationally predict local buckling stress.

A continuity method for bridges constructed with precast prestressed concrete girders

  • Lee, Hwan Woo;Barnes, Robert W.;Kim, Kwang Yang
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.879-898
    • /
    • 2004
  • A method of making simply supported girders continuous is described for bridges with spans of 30-45 m. The splicing method takes advantage of an induced secondary moment to transform the self-weight stresses in the precast simply supported girders into values representative of a continuous girder. The secondary moment results from prestressing of continuity tendons and detensioning of temporary tendons in the girders. Preliminary sections are selected for spliced U-girder bridges with a range of span lengths. Use of the proposed technique results in girder depth reductions of 500-800 mm when compared to standard simply supported I-girder bridges. The flexural behavior of an example bridge with 40-m spans is examined to illustrate the necessary considerations for determining the optimum sequence of splicing operations.