• Title/Summary/Keyword: girders

Search Result 760, Processing Time 0.024 seconds

Study on Reduction of Excessive Noise and Vibration of Aft Part of High Speed Ro-Ro Passenger Ship (고속 여객선 선미부 과대 진동/소음 감소를 위한 연구)

  • Shin, Yunkil
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.196-202
    • /
    • 2019
  • In this study, the excessive noise and vibration phenomena of a high-speed Ro/Ro passenger ship were analyzed, and a countermeasure was taken based on them. This ship was granted a comfort class notation by the classification society, which was COMFORT-VIBRATION-II and COMFORT-NOISE-CREW-II. However, unfortunately, excessive noise and vibration in the aft part of the ship were delivered from the twin shaft propellers, and therefore the Class Requirement was not satisfied before delivery. In order to obtain the class notation, all of the concerned parties came to an agreement to reduce the noise and vibration level during operation after delivery because a seasonal ferry service was already scheduled and the cabin was fully booked. The root cause of the massive amount of noise and vibration was mainly the propeller-induced excitation pulse and beating that occurred from the mismatch of the rotating speeds of the two shaft lines. A 1st order vibrating force and beating phenomena existed in the propeller. Thus, a reduction of the excitation force, elimination of the beating phenomena, and decrease of the noise level at the aft area cabins and public spaces were required. In addition, structural reinforcements were conducted using pillars and additional girders at the aft part of the decks.

Flexural Response of Negative Moment Region of Hybrid Prestressed Precast Concrete (HPPC) System (하이브리드 프리스트레스트 프리캐스트 콘크리트 구조시스템의 부모멘트 영역 휨거동)

  • Choi, Seung-Ho;Hwang, Jin-Ha;Heo, InWook;Kim, Kang Su;Woo, Woon-Taek
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.3-10
    • /
    • 2018
  • Hybrid Prestressed Precast Concrete System (HPPC system) is a newly developed frame system that can improve the performance of precast concrete (PC) joints by post-tensioning. In particular, the details proposed in this study can reduce the lifting weight of the PC members and eliminate problems caused by cracks in the joints that occur under service loads. This study performed an evaluation on the negative moment performance of full-scaled HPPC girders. The test specimens were cast with or without slabs, with bonded or unbonded tendons, and had different post-tensioned lengths in tensile section. The test results showed that the specimens with slabs had significantly higher stiffness and strength than those without slabs. There were no differences in the flexural behavior between those with bonded or unbonded tendons, and between those with short or long post-tensioned lengths in the negative moment region.

Influence of prestressing on the behavior of uncracked concrete beams with a parabolic bonded tendon

  • Bonopera, Marco;Chang, Kuo-Chun;Lin, Tzu-Kang;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The influence of prestress force on the fundamental frequency and static deflection shape of uncracked Prestressed Concrete (PC) beams with a parabolic bonded tendon was examined in this paper. Due to the conflicts among existing theories, the analytical solutions for properly considering the dynamic and static behavior of these members is not straightforward. A series of experiments were conducted for a total period of approximately 2.5 months on a PC beam made with high strength concrete, subsequently and closely to the 28 days of age of concrete. Specifically, the simply supported PC member was short term subjected to free transverse vibration and three-point bending tests during its early-age. Subsequently, the experimental data were compared with a model that describes the dynamic behavior of PC girders as a combination of two substructures interconnected, i.e., a compressed Euler-Bernoulli beam and a tensioned parabolic cable. It was established that the fundamental frequency of uncracked PC beams with a parabolic bonded tendon is sensitive to the variation of the initial elastic modulus of concrete in the early-age curing. Furthermore, the small variation in experimental frequency with time makes doubtful its use in inverse problem identifications. Conversely, the relationship between prestress force and static deflection shape is well described by the magnification factor formula of the "compression-softening" theory by assuming the variation of the chord elastic modulus of concrete with time.

CNN deep learning based estimation of damage locations of a PSC bridge using static strain data (정적 변형률 데이터를 사용한 CNN 딥러닝 기반 PSC 교량 손상위치 추정)

  • Han, Man-Seok;Shin, Soo-Bong;An, Hyo-Joon
    • Journal of KIBIM
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2020
  • As the number of aging bridges increases, more studies are being conducted on developing effective and reliable methods for the assessment and maintenance of bridges. With the advancement in new sensing systems and data learning techniques through AI technology, there is growing interests in how to evaluate bridges using these advanced techniques. This paper presents a CNN(Convolution Neural Network) deep learning based technique for evaluating the damage existence and for estimating the damage location in PSC bridges using static strain data. Simulation studies were conducted to investigate the proposed method with error analysis. Damage was simulated as the reduction in the stiffness of a finite element. A data learning model was constructed by applying the CNN technique as a type of deep learning. The damage status and its location were estimated using data set built through simulation. It was assumed that the strain gauges were installed in a regular interval under the PSC bridge girders. In order to increase the accuracy in evaluating damage, the squared error between the intact and measured strains are computed and applied for training the data model. Considering the damage occurring near the supports, the results of error analysis were compared according to whether strain data near the supports were included.

Influence of trapezoidal and sinusoidal corrugation on the flexural capacity of optimally designed thin-walled beams

  • Erdal, Ferhat;Tunca, Osman;Taylan, Harun;Ozcelik, Ramazan;Sogut, Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.63-76
    • /
    • 2022
  • Major engineering requirements and technological developments in the steel construction industry are discussed to support a new innovative system, namely corrugated web beams, for future structural projections. These new-generation steel beams, fabricated as welded plate girders with corrugated webs, are designed to combine large spans with very low weight. In the present study, the flexural capacity of optimally designed trapezoidal and sinusoidal corrugated web beams was aimed at. For this purpose, the new metaheuristic methods, specifically hunting search and firefly algorithms, were used for the minimum weight design of both beams according to the rules of Eurocode EN 1193 15 and DASt-Ri 015. In addition, the strengthening effects of the corrugation geometry at the web posts on the load capacity of fabricated steel beams were tested in a reaction frame. The experimental tests displayed that the lateral capacity of trapezoidal web beams is more durable under flexural loads compared to sinusoidal web beams. These thin-walled beams were also simulated using a 3-D finite element model with plane strain to validate test results and describe the effectiveness of the ABAQUS software.

One-step deep learning-based method for pixel-level detection of fine cracks in steel girder images

  • Li, Zhihang;Huang, Mengqi;Ji, Pengxuan;Zhu, Huamei;Zhang, Qianbing
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.153-166
    • /
    • 2022
  • Identifying fine cracks in steel bridge facilities is a challenging task of structural health monitoring (SHM). This study proposed an end-to-end crack image segmentation framework based on a one-step Convolutional Neural Network (CNN) for pixel-level object recognition with high accuracy. To particularly address the challenges arising from small object detection in complex background, efforts were made in loss function selection aiming at sample imbalance and module modification in order to improve the generalization ability on complicated images. Specifically, loss functions were compared among alternatives including the Binary Cross Entropy (BCE), Focal, Tversky and Dice loss, with the last three specialized for biased sample distribution. Structural modifications with dilated convolution, Spatial Pyramid Pooling (SPP) and Feature Pyramid Network (FPN) were also performed to form a new backbone termed CrackDet. Models of various loss functions and feature extraction modules were trained on crack images and tested on full-scale images collected on steel box girders. The CNN model incorporated the classic U-Net as its backbone, and Dice loss as its loss function achieved the highest mean Intersection-over-Union (mIoU) of 0.7571 on full-scale pictures. In contrast, the best performance on cropped crack images was achieved by integrating CrackDet with Dice loss at a mIoU of 0.7670.

Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion

  • Tang, Wen;Wu, Rih-Teng;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.221-235
    • /
    • 2022
  • Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.

Structural performance of fiber reinforced cementitious plinths in precast girder bridges

  • Gergess, Antoine N;Challita, Julie
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.313-323
    • /
    • 2022
  • Steel laminated elastomeric bearings are commonly used in bridge structures to control displacements and rotations and transfer forces from the superstructure to the substructure. Proper knowledge of design, fabrication and erection procedures is important to ensure stability and adequate structural performance during the lifetime of the bridge. Difference in elevations sometimes leads to large size gaps between the bearing and the girder which makes the grout thickness that is commonly used for leveling deviate beyond standards. This paper investigates the structural response of High Strength Fiber Reinforced Cementitious (HSFRC) thin plinths that are used to close gaps between bearing pads and precast girders. An experimental program was developed for this purpose where HSFRC plinths of different size were cast and tested under vertical loads that simulate bridge loading in service. The structural performance of the plinths was closely monitored during testing, mainly crack propagation, vertical reaction and displacement. Analytically, the HSFRC plinth was analyzed using the beam on elastic foundation theory as the supporting elastomeric bearing pads are highly compressible. Closed form solutions were derived for induced displacement and forces and comparisons were made between analytical and experimental results. Finally, recommendations were made to facilitate the practical use of HSFRC plinths in bridge construction based on its enhanced load carrying capacity in shear and flexure.

Cyclic behavior of jumbo reduced beam section connections with heavy sections: Numerical investigation

  • Qi, Liangjie;Liu, Mengda;Shen, Zhangpeng;Liu, Hang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.183-196
    • /
    • 2022
  • Reduced beam section (RBS) moment connections used in special moment resisting frames are currently limited to beam sections that are not larger than nominal depths of 920 mm, weight of 447 kg/m and flange thickness of 44 mm. Due to the higher demand for structural components with jumbo sections, which can potentially be applied in the transfer girders in long-span building structures, the newly available steel heavy members are promising. To address this issue, advanced numerical models are developed to fully evaluate the distribution of stresses and concentrations of plastic strains for such jumbo RBS connections. This paper first presents a brief overview of an experimental study on four specimens with large beam and column sections. Then, a numerical model that includes initial imperfections, residual stresses, geometric nonlinearity, and explicitly modeled welds is presented. The model is used to further explore the behavior of the test specimens, including distribution of stresses, distribution of plastic strains, stress triaxiality and potential for fracture. The results reveal that the stresses are highly non-uniform across the beam flange and, similarly, the plastic strains concentrate at the extreme fiber of the bottom flange. However, neither of these phenomena, which are primarily a function of beam flange thickness, is reflected in current design procedures.

Earthquake Movement Measurement of the Top of Bridge Pier Using Fiber Optic Smart Structure Concept (광섬유 스마트 구조물의 개념을 이용한 교량상부 내진거동 측정)

  • Kim Ki-Soo;Han In-Dong
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.43-49
    • /
    • 2006
  • In this paper, a long gauge Fiber Bragg Grating (FBG) sensor system is described and long gauge FBGs are well-suited for measuring the upper parts of the bridge piers under the extremely severe movement conditions. In the experiments, we used more than 30m long FBG sensors to measure the movement of top part of the bridge piers which are separated from the main bridge by cutting the decks. With the actuator, the deck and girders were pushed and released. We checked the movement of the top of the pier while releasing the pressure of the actuator with the long gauge fiber sensor. In order to measure the movement of the upper part of the pier, the reference point must be outside of the pier. Using the optical fiber sensors, one end of the sensor is attached to the top of the pier and the other end is attached to the bottom of the next pier. The fiber sensors showed good response to the release loading and we could calculate the movement of the top part of the pear.