• Title/Summary/Keyword: girders

Search Result 760, Processing Time 0.023 seconds

Seismic Retrofit of High-Rise Building with Deformation-Dependent Oil Dampers against Long-Period Ground Motions

  • Aono, Hideshi;Hosozawa, Osamu;Shinozaki, Yozo;Kimura, Yuichi
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.177-186
    • /
    • 2016
  • Along the subduction-zone of the western Japanese islands, large earthquakes are expected occur around the middle of this century, and long-period ground motions will reach major urban areas, shaking high-rise buildings violently. Since some old high-rise buildings were designed without considering long-period ground motions, reinforcing such buildings is an important issue. An effective method to reinforce existing high-rise buildings is installing additional dampers. However, a problem with ordinary dampers is that they require reinforcement of surrounding columns and girders to support large reaction forces generated during earthquake ground motion. To solve this problem, a deformation-dependent oil damper was developed. The most attractive feature of this damper is to reduce the damping force at the moment when the frame deformation comes close to its maximum value. Due to this feature, the reinforcement of columns, girders, and foundations are no longer required. The authors applied seismic retrofitting with a deformation-dependent oil damper to an existing 54-story office building (Shinjuku Center Building) located in Shinjuku ward, Tokyo, in 2009 to suppress vibration under the long period earthquake ground motions. The seismic responses were observed in the 2011 Tohoku Earthquake, and it is clarified that the damping ratio was higher and the response lower by 20% as compared to the building without dampers.

Numerical simulation of concrete slab-on-steel girder bridges with frictional contact

  • Lin, Jian Jun;Fafard, Mario;Beaulieu, Denis
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.257-276
    • /
    • 1996
  • In North America, a large number of concrete old slab-on-steel girder bridges, classified noncomposite, were built without any mechanic connections. The stablizing effect due to slab/girder interface contact and friction on the steel girders was totally neglected in practice. Experimental results indicate that this effect can lead to a significant underestimation of the load-carrying capacity of these bridges. In this paper, the two major components-concrete slab and steel girders, are treat as two deformable bodies in contact. A finite element procedure with considering the effect of friction and contact for the analysis of concrete slab-on-steel girder bridges is presented. The interface friction phenomenon and finite element formulation are described using an updated configuration under large deformations to account for the influence of any possible kinematic motions on the interface boundary conditions. The constitutive model for frictional contact are considered as slip work-dependent to account for the irreversible nature of friction forces and degradation of interface shear resistance. The proposed procedure is further validated by experimental bridge models.

Structural Performance Test of A Rahmen Bridge with Inverted-T Girder (Inverted-T형 거더 라멘교의 구조성능 시험)

  • Lee, Yeon-Hun;Park, Yong-Kwon;Yang, Dong-Wook;Lim, Hyeon-Sik;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.99-100
    • /
    • 2010
  • The objective of this research aims at improving the structural and economical efficiency of small and medium-span reinforced concrete bridges by importing the Inverted-T girders (hereinafter, called as IT). This new Rahmen bridge with IT girders has an advantage over minimizing the construction process which could cause environmental pollution and traffic congestion. Especially it is thought that this new composite bridge can give better aesthetic and view than existing old bridges, and can be a good construction method to solve labor shortage problems due to coming aging society. Therefore, this IT method should be one of very effective construction technologies to improve the constructibility and to reduce the construction cost.

  • PDF

Hanger Tension Variation of Self-Anchored Suspension Bridge in Construction (시공중 자정식 현수교의 행거 장력변화)

  • Kim, Ho Kyung;Suh, Jeong In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1309-1317
    • /
    • 1994
  • Because the stiffening girders are constructed after the installation of hangers for typical suspension bridge, no additional tensioning to hangers in construction is necessary for this bridge type in which main cable is earth-anchored. However, for self-anchored suspension bridge, hangers are installed after temporarily supporting stiffening girders constructed in previous stage. Therefore, initial tension is required on installing hangers. Tension of hangers varies as the construction proceeds. Hence, it is necessary to determine the most efficient method of installing hangers among several methods. This study presents finite element procedures and the algorithms of construction stage analysis to simulate construction processes. Geometric nonlinear analysis scheme is also included. The most effective method regarding the installation of hangers is presented through the examples of actual bridge model.

  • PDF

An Experimental Study on the Fatigue Behavior of Steel-Concrete Composite Bridge Deck (강-콘크리트 합성 교량 바닥판의 피로거동에 대한 실험적 연구)

  • 심정욱;김상효;정연주;박휘립
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.499-504
    • /
    • 2003
  • Future bridge decks must have high load-resistance capacity as well as fatigue strength to withstand the increase in traffic loading and the increase in span length between girders due to the decrease in the number of main girders. Steel-concrete composite bridge decks may be proper deck types to satisfy such requirements. To promote the application of composite bridge decks, a rational process to predict and evaluate the fatigue behavior of steel concrete composite bridge deck is required. Various types of steel-concrete composite bridge decks have been developed in many countries. In this study, combining advantages of the existing composite deck types, a new type of composite bridge deck is proposed. An experimental study is performed to examine the fatigue behavior of the proposed composite bridge deck. This composite bridge deck consists of corrugated steel sheet, welded T-beams, stud-type shear connectors and reinforced concrete filler. The fatigue tests are conducted under four-point bending test with three different stress ranges in constant amplitude. The fatigue category of the fillet welding between corrugated steel sheet and the T-beam is evaluated based on the S-N data obtained from the experiment.

  • PDF

A Study on the Design Parameters of the PSC I-Type Girders for Long Span Bridges (장지간 교량을 위한 PSC-I형 거더의 단면 설계변수 연구)

  • 심종성;오홍섭;김민수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.13-22
    • /
    • 2000
  • In order to resolve the problem of increasing traffic entailed by the economic development, road system is reorganization and new highways are built, and long span bridges over 40m are being constructed in environmental and aesthetic considerations. Most long span bridges that are currently being constructed are in general steel box girder and preflex girder bridges; however these types of breiges are less efficiency than PSC I-type girder bridges in terms of construction cost and maintenance. Therefore, in these study, structural efficiency of PSC I-type girders based on section parameters, concrete compressive strength and other design parameter is observed to develope new PSC I-type girder for long span bridges. As a results of analysis, most important design parameters that control the stress of the girder are found to be the top flange width and the height of girder. In this light, the relationship between the two variables is determined and cross-section details of the girder that most appropriates for the long span bridges are proposed. The use of high strength concrete appears to increase the general design span however the increase rate of the span from increasing concrete ultimate strength appears to be reduced depending on the span. Also, the optimal girder spacing is determined through the parameter studies of design span using the proposed girder.

Risk Assessment for the Failure of an Arch Bridge System Based upon Response Surface Method(I): Component Reliability (응답면 기법에 의한 아치교량 시스템의 붕괴 위험성평가(I): 요소신뢰성)

  • Cho, Tae-Jun;Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.74-81
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method(RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method.

The empirical corner stiffness for right-angle frames of rectangular and H-type cross-sections

  • Kwon, Young-Doo;Kwon, Soon-Bum;Gil, Hyuck-Moon;Cho, Hui-Jeong
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.471-485
    • /
    • 2014
  • Until now, the finite corner stiffness of the right-angle frames used as horizontal girders in a bonnet, have not been considered during the design process to result in not a precise result. This paper presents a design equation set for right-angle frames used as horizontal girders in a bonnet assuming rigid corner stiffness. By comparing the center stresses of the right-angle frame according to the design equation set with the results of the finite element method, the master curves for the empirical corner stiffness can be determined as a function of slenderness ratio. A second design equation set for a right-angle frame assuming finite corner stiffness was derived and compared with the first equation set. The master curves for the corner stiffness and the second design equation set can be used to determine the design moments at the centers of the girder so that the bending stresses can be analyzed more precisely.

Girder distribution factors for steel bridges subjected to permit truck or super load

  • Tabsh, Sami W.;Mitchell, Muna M.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.237-249
    • /
    • 2016
  • There are constraints on truck weight, axle configurations and size imposed by departments of transportation around the globe due to structural capacity limitations of highway pavements and bridges. In spite of that, freight movers demand some vehicles that surpass the maximum size and legal weight limits to use the transportation network. Oversized trucks serve the purpose of spreading the load on the bridge; thus, reducing the load effect on the superstructure. For such vehicles, often a quick structural analysis of the existing bridges along the traveled route is needed to ensure that the structural capacity is not exceeded. For a wide vehicle having wheel gage larger than the standard 1830 mm, the girder distribution factors in the design specifications cannot be directly used to estimate the live load in the supporting girders. In this study, a simple approach that is based on finite element analysis is developed by modifying the AASHTO LRFD's girder distribution factors for slab-on-steel-girder bridges to overcome this problem. The proposed factors allow for determining the oversized vehicle bending moment and shear force effect in the individual girders as a function of the gage width characteristics. Findings of the study showed that the relationship between the girder distribution factor and gage width is more nonlinear in shear than in flexure. The proposed factors yield reasonable results compared with the finite element analysis with adequate level of conservatism.

Elastic Shear Buckling of Curved Web Panels (강곡선 1형보 복부판의 탄성 전단좌굴)

  • 김재석;김종헌;강영종;한택희
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • The horizontally curved bridges have been used to connect bridges and roads. Until 1960s, they had been constructed with straight girders, called 'kinked girder bridges', which requires much cost and time-consuming construction of substructure. In case of using curved girders, practiced later, they would have many advantages such as reduction in the total construction cost and time, and ability to make aesthetic bridges. In designing plate girder bridges, it is necessary to determine the spacings between vertical stiffeners and the allowable shear stresses based on shear buckling capacity because it plays a key role in preventing the premature local shear buckling. Compared with the straight web, the critical shear buckling stresses of curved web panels vary with both aspect ratio and curvature coefficient. For designing curved web panels, a simplified formula and shear buckling coefficients were proposed by parametric models with F.E.M in this study.