• 제목/요약/키워드: ginsenoside Rg2

검색결과 558건 처리시간 0.028초

인삼 뿌리 부위별 및 모상근 세포주간 ginsenoside 양상 및 함량 (Patterns and Contents of Ginsenoside in Normal Root Parts and Hairy Root Lines of Panax ginseng C. A. Meyer)

  • 양덕춘;양계진
    • 식물조직배양학회지
    • /
    • 제27권6호
    • /
    • pp.485-489
    • /
    • 2000
  • 생장이 우수한 인삼모상근 세포주 (KGHR-1, KGHR-5, KGHR-8) 및 6년생 인삼근의 부위별로 ginsenoside 양상 및 생성특성을 조사하였다. 인삼모상근 및 6년생 인상근에서 ginsenoslde-Rb$_1$, Rb$_2$, Rc, Rd, Re, Rf, Rg$_1$, Rg$_2$을 확인하였으며, 인삼모상근 세포주간 및 인삼근 부위별로 ginsenoside의 함량은 큰 차이를 나타내었다. 8종류의 ginsenoside함량이 가장 높은 인삼모상근은 KGHR-1 세포주로 17.42 mg/g dry wt와 함량을 나타내었다. 모상근세포주 KGHR-1은 ginsenoside-Rd, Rg$_1$을, KGHR-5는 ginsenoside-Rb$_1$, Rg$_1$을, 그리고 KGHR-8은 ginsenoside-Rd, Re을 상대적으로 많이 생성하는 특징을 지니고 있으며, ginsenoside-Rf의 생성은 매우 낮았다. 6년생 인삼근의 부위별 ginsenoside의 함량은 주근, 지근, 세근순으로 많았으며, 주근에서 ginsenoside-Rc의 생성은 ginsenoside의 50.99%로써 모상근 세포주의 4.90~6.89%보다 매우 높았다. 6년생 인삼근의 총 ginsenoside에 대한 ginsenoside-Rg$_1$의 비율은 3.43~14.18% 수준으로 주근, 지근, 세근순으로 급격히 감소하였으며, 모상관의 17.14~24.43%와 비교할 때 매우 낮은 수준을 나타내었다. 따라서 인삼모상근 배양을 통하여 특정 ginsenosides생산이 가능하리라 생각된다.

  • PDF

Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1

  • Vo, Hoang Tung;Cho, Jae Youl;Choi, Yong-Eui;Choi, Yong-Soon;Jeong, Yeon-Ho
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.304-313
    • /
    • 2015
  • Background: Ginsenoside Rg3 is a promising anticancer agent. It is usually produced by heat treatment of ginseng, in which ginsenoside Rb1 is the major ginsenoside. A kinetic study was conducted to optimize ginsenoside Rg3 production by the heat treatment of ginsenoside Rb1. Methods: Ginsenoside Rb1 was heated using an isothermal machine at $80^{\circ}C$ and $100^{\circ}C$ and analyzed using HPLC. The kinetic parameters were calculated from the experimental results. The activation energy was estimated and used to simulate the process. The optimized parameters of ginsenoside Rg3 production are suggested based on the simulation. Results: The rate constants were $0.013h^{-1}$ and $0.073h^{-1}$ for the degradation of ginsenosides Rb1 and Rg3 at $80^{\circ}C$, respectively. The corresponding rate constants at $100^{\circ}C$ were $0.045h^{-1}$ and $0.155h^{-1}$. The estimated activation energies of degradation of ginsenosides Rb1 and Rg3 were 69.2 kJ/mol and 40.9 kJ/mol, respectively. The rate constants at different temperatures were evaluated using the estimated activation energies, and the kinetic profiles of ginsenosides Rb1 and Rg3 at each temperature were simulated based on the proposed kinetic model of consecutive reaction. The optimum strategies for producing ginsenoside Rg3 from ginsenoside Rb1 are suggested based on the simulation. With increased temperature, a high concentration of ginsenoside Rg3 is formed rapidly. However, the concentration decreases quickly after the reaching the maximal concentration value. Conclusion: The optimum temperature for producing ginsenoside Rg3 should be the highest temperature technically feasible below $180^{\circ}C$, in consideration of the cooling time. The optimum reaction time for heat treatment is 30 min.

백삼 및 홍삼 농축액의 사포닌 분석 (Analysis of Ginsenosides of White and Red Ginseng Concentrates)

  • 고성권;이충렬;최용의;임병옥;성종환;윤광로
    • 한국식품과학회지
    • /
    • 제35권3호
    • /
    • pp.536-539
    • /
    • 2003
  • 백삼 가공품과 홍삼 가공품의 사포닌 분포 내용과 함량을 비교하기 위하여 시판되고 있는 백삼 농축액(WGC)과 홍삼 농축액(RGC)을 각각 1종 선정하여 조 사포닌의 함량과 개별 ginsenoside의 함량분포를 조사하였다. Shibata의 방법과 우리나라 식품공전에 따라 측정한 조 사포닌의 양은 WGC가 각각 10.65와 21.77%이었으며 RGC는 5.80와 10.94%이였고, HPLC에 의한 총 사포닌의 양은 WGC가 7.40와 10.64%, RGC는 3.31와 3.13%로서 백삼 농축액의 사포닌 함량이 홍삼 농축액의 경우 보다 전반적으로 높았다. HPLC로 분석한 인삼 사포닌, ginsenoside $Rb_1,\;Rb_2,\;Rc,\;Rd,\;Re,\;Rf,\;Rg_1,\;20(S)\;Rg_3,\;20(R)Rg_3,\;20(S)\;Rh_1$ 그리고 $20(R)\;Rh_1$ 이었으며 대부분 홍삼농축액 보다는 백삼농축액의 함량이 높았으며, 특히 ginsenoside $Rb_1,\;Rg_1$ 그리고 $Rb_2$은 백삼 농축액에 3배 이상 더 함유되어 있었다. 또한 protopanaxadiol group과 protopanaxatriol group의 비율(PD/PT)에 있어서는 농축액간의 차이는 크지 않았다. 홍삼의 특유 사포닌으로 알려진 20(S)- 및 20(R)-ginsenoside $Rg_3$가 WGC와 RGC에 비슷하게 분포하는 것으로 확인되었다. 20(S)-ginsenoside $Rg_3$의 조 사포닌 조제법에 따라 RGC에서 0.48과 0.47% WGC에 0.40와 0.53%, 20(R)-ginsenoside $Rg_3$도 RGC에 0.10과 0.11%, WGC에 0.14와 0.22%이었다.

Cardioprotective Effect of the Mixture of Ginsenoside Rg3 and CK on Contractile Dysfunction of Ischemic Heart

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제31권1호
    • /
    • pp.23-33
    • /
    • 2007
  • Ginsenosides are one of the most well-known traditional herbal medicines frequently used for the treatment of cardiovascular symptoms in korea. The anti-ischemic effects of the mixture of ginsenoside $Rg_3$, and CK on ischemia-induced isolated rat heart were investigated through analyses of changes in hemodynamics ; blood pressure, aortic flow, coronary flow, and cardiac output. The subjects in this study were divided into four groups: normal control, the mixture of ginsenoside $Rg_3$ and CK, an ischemia-induced group without any treatment, and an ischemia-induced group treated with the mixture of ginsenoside $Rg_3$ and CK. There were no significant differences in perfusion pressure, aortic flow, coronary flow and cardiac output between them before ischemia was induced. The supply of oxygen and buffer was stopped for five minutes to induce ischemia in isolated rat hearts, and the mixture of ginsenoside $Rg_3$ and CK was administered during ischemia induction. Treatments of the mixture of ginsenoside $Rg_3$ and CK significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output under ischemic conditions. In addition, hemodynamics (except heart rate) of the group treated with the mixture of ginsenoside $Rg_3$ and CK significantly recovered 60 minutes after reperfusion compared to the control group (mixture+ischemia vs ischemia - average perfusion pressure: 74.4${\pm}$2.97% vs. 85.1${\pm}$3.01%, average aortic flow volume: 49.11${\pm}$2.72% vs. 59.97${\pm}$2.93%, average coronary flow volume: 58.50${\pm}$2.81% vs. 72.72${\pm}$2.99%, and average cardiac output: 52.47${\pm}$2.78% vs. 63.11${\pm}$2.76%, p<0.01, respectively). These results suggest that treatment of the mixture of ginsenoside $Rg_3$ and CK has distinct anti-ischemic effects in ex vivo model of ischemia-induced rat heart.

Ginsenoside Rg3 increases gemcitabine sensitivity of pancreatic adenocarcinoma via reducing ZFP91 mediated TSPYL2 destabilization

  • Pan, Haixia;Yang, Linhan;Bai, Hansong;Luo, Jing;Deng, Ying
    • Journal of Ginseng Research
    • /
    • 제46권5호
    • /
    • pp.636-645
    • /
    • 2022
  • Background: Ginsenoside Rg3 and gemcitabine have mutual enhancing antitumor effects. However, the underlying mechanisms are not clear. This study explored the influence of ginsenoside Rg3 on Zinc finger protein 91 homolog (ZFP91) expression in pancreatic adenocarcinoma (PAAD) and their regulatory mechanisms on gemcitabine sensitivity. Methods: RNA-seq and survival data from The Cancer Genome Atlas (TCGA)-PAAD and Genotype-Tissue Expression (GTEx) were used for in-silicon analysis. PANC-1, BxPC-3, and PANC-1 gemcitabine-resistant (PANC-1/GR) cells were used for in vitro analysis. PANC-1 derived tumor xenograft nude mice model was used to assess the influence of ginsenoside Rg3 and ZFP91 on tumor growth in vivo. Results: Ginsenoside Rg3 reduced ZFP91 expression in PAAD cells in a dose-dependent manner. ZFP91 upregulation was associated with significantly shorter survival of patients with PAAD. ZFP91 overexpression induced gemcitabine resistance, which was partly conquered by ginsenoside Rg3 treatment. ZFP91 depletion sensitized PANC-1/GR cells to gemcitabine treatment. ZFP91 interacted with Testis-Specific Y-Encoded-Like Protein 2 (TSPYL2), induced its poly-ubiquitination, and promoted proteasomal degradation. Ginsenoside Rg3 treatment weakened ZFP91-induced TSPYL2 poly-ubiquitination and degradation. Enforced TSPYL2 expression increased gemcitabine sensitivity of PAAD cells and partly reversed induced gemcitabine resistance in PANC-1/GR cells. Conclusion: Ginsenoside Rg3 can increase gemcitabine sensitivity of pancreatic adenocarcinoma at least via reducing ZFP91 mediated TSPYL2 destabilization.

인삼 사포닌에서 Ginsenoside-$Rg_2$와 -$Rg_3$의 이성질체인 20(R&S) Prosapogenin들의 역상 고속 액체 크로마토그래피에 의한 분리 (Separation of 20(R&S) Prosapogenin Isomers of Ginsenoside-$Rg_2$ and -$Rg_3$ from Ginseng Saponins by Reversed-Phase High Performance Liquid Chromatography)

  • 정승일;김천석;이용구;이호섭;김일광
    • 분석과학
    • /
    • 제11권5호
    • /
    • pp.404-408
    • /
    • 1998
  • Using a reversed-phase high performance liquid chromatography, the separation of 20(S)-, 20(R)-prosapogenin stereo-isomers of ginsenoside-$Rg_2$ and of ginsenoside-$Rg_3$ in ginseng saponins has been carried out with binary solvent system. The optimum conditions for the isomer separation are as following: Nova-$Pak^{(R)}C_{18}$ (Waters, $3.9{\times}150mm$) column, $CH_3CN/CH_3CN$ (100:8, v/v) binary solvent system and the flow rate was 1.7 mL/min. The stereoisomers were separated with change of the mixture ratio of the solvent system, the solvent elution by gradient program, and then detected at 203 nm of UV detector. The simultaneous separation of mixture that were the $Rg_2$, $Rg_3$ isomers was easily performed in nonpolar solvent for $Rg_2$, polar solvent for $Rg_3$ at the same optimum conditions.

  • PDF

Ginsenoside Rg1 Induces Autophagy in Colorectal Cancer through Inhibition of the Akt/mTOR/p70S6K Pathway

  • Ruiqi Liu;Bin Zhang;Shuting Zou;Li Cui;Lin, Lin;Lingchang Li
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.774-782
    • /
    • 2024
  • This study aimed to elucidate the anti-colon cancer mechanism of ginsenoside Rg1 in vitro and in vivo. Cell viability rate was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium assay. The inhibitory effect of ginsenoside Rg1 against CT26 cell proliferation gradually increased with increasing concentration. The in vivo experiments also demonstrated an antitumor effect. The monodansylcadaverine (MDC), transmission electron microscopy (TEM), and expression of autophagy marker proteins confirmed that ginsenoside Rg1 induced autophagy in vitro. Ginsenoside Rg1 induced autophagy death of CT26 cells, but this effect could be diminished by autophagy inhibitor (3-methyladenine, 3-MA). Additionally, in a xenograft model, immunohistochemical analysis of tumor tissues showed that the LC3 and Beclin-1 proteins were highly expressed in the tumors from the ginsenoside Rg1-treated nude mice, confirming that ginsenoside Rg1 also induced autophagy in vivo. Furthermoer, both in vivo and in vitro, the protein expressions of p-Akt, p-mTOR, and p-p70S6K were inhibited by ginsenoside Rg1, which was verified by Akt inhibitors. These results indicated that the mechanism of ginsenoside Rg1 against colon cancer was associated with autophagy through inhibition of the Akt/mTOR/p70S6K signaling pathway.

Production of Red Ginseng Specific Ginsenosides $(Rg_2, Rg_3, Rh_1 and Rh_2)$ from Agrobacterium-transformed hairy Roots of Panax ginseng by Heat Treatment

  • Yang, Deok-Chun;Yang, Kye-Jin;Park, Yong-Eui
    • Journal of Photoscience
    • /
    • 제8권1호
    • /
    • pp.19-22
    • /
    • 2001
  • It was reported that Red ginseng contains specific ginsenoside-Rg$_2$,-Rg$_3$,-Rh$_1$and -Rh$_2$, which show various pharmacological effects. However, production of these specific ginsenosides from Red ginseng is not commercially applicable because of high cost of the raw material, roots. This work was carried out to examine the production of Red ginseng specific ginsenosides from Agrobacterium-transformed hairy roots. Hairy roots were induced from 3 year-old root segment of Korean ginseng (Panax ginseng C.A. Meyer) after infection with Agrobacterium rhizogenes A4. Among many lines of hairybroots, KGHR-8A was selected. Steam heat treatment of hairy roots was resulted in the changes of ginsenoside composition. Eleven ginsenosides were detected in heat-treated hairy roots but eight in freeze dried hairy roots. In heat treated hairy root, content of ginsenoside-Rb$_1$,Rb$_2$,Rc, Rd, Re, Rf, and Rg$_1$were decreased compared to those of freeze dried hairy roots. However, heat treatment strongly enhanced the amount of Red ginseng specific ginsenogides (ginsenoside-Rg$_2$,-Rg$_3$,-Rh$_1$and -Rh$_2$). Amounts of ginsenoside-Rg$_3$,-Rh$_1$and -Rh$_2$ in heat-treated hairy roots were 2.58, 3.62 and 1.08 mg/g dry wt, respectively, but these were detected as trace amount in hairy roots without heat treatment. Optimum condition of heat treatment for the production of Red ginseng specific ginsenoside was 2 h at 105$^{\circ}C$. This result represents that Red ginseng specific ginsenoside can be producted from hairy roots by steam heat treatment.

  • PDF

Ginsenoside Rg3이 흰쥐 척수압박손상의 초기 염증반응에 미치는 영향 (Effects of Ginsenoside Rg3 on Early-stage Inflammatory Response in Spinal Cord Compression of Rodents)

  • 정벌;이종수
    • 한방재활의학과학회지
    • /
    • 제23권2호
    • /
    • pp.1-15
    • /
    • 2013
  • Objectives : In present study, we investigated the effects of ginsenoside Rg3 on early-stage inflammatory response in spinal cord compression of rodents. Methods : Spinal cord injury(SCI) was induced by a vascular clip method(30 g, 5 min) on the spinal cord of mice. Rg3 was treated orally at 1 hour prior to the SCI induction. Messenger ribonucleic acid(mRNA) expression of tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), interleukin-1${\beta}$(IL-1${\beta}$), interleukin-6(IL-6) and cyclooxygenase-2(COX-2) was measured by the real-time polymerase chain reaction(RT-PCR). Microglia in the spinal cord tissue, neurophils and COX-2 in the peri-lesion and inducible nitric oxide synthase(iNOS) expression in the ventral horn of SCI induced rats were measured by immunohistochemical stain. Results : 1. Rg3 significantly reduced the mRNA expression of TNF-${\alpha}$, IL-1${\beta}$, and COX-2 in the spinal cord tissue compared with SCI group(p<0.05, p<0.01). 2. Rg3 significantly reduced the total number of activated microglia and proportion of phagocytic form in the total activated microglia compared with SCI group(p<0.05, p<0.01). 3. Rg3 significantly reduced myeloperoxidase(MPO) positive neurophil in the peri-lesion compared with SCI group(p<0.05). 4. Rg3 reduced the COX-2 expression in the tissue and motor neurons compared with SCI group. 5. Rg3 significantly reduced iNOS positive motor neurons in the ventral horn compared with SCI group(p<0.01). Conclusions : In conclusion, we demonstrated at first that treatment of ginsenoside Rg3 could reduce significantly the levels of inflammatory mediators in a spinal cord compression model of rodents. Therefore, these results suggested that ginsenoside Rg3 may be a useful antimiflamatory therapeutic candidate for SCI.

Changes of Prosapogenin Components in Tienchi Seng (Panax notoginseng) by Ultrasonic Thermal Fusion Process

  • Lee, Jae Bum;Yang, Byung Wook;Kim, Do Hyeong;Jin, Dezhong;Ko, Sung Kwon
    • Natural Product Sciences
    • /
    • 제27권1호
    • /
    • pp.10-17
    • /
    • 2021
  • The purpose of this study is to develop a new method of producing tienchi seng (notoginseng, Panax notoginseng) extracts featuring high concentrations of the ginsenoside Rg3, Rg5, and Rg6, special components of Korean red ginseng. The chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by HPLC. Tienchi seng was heat-processed at 100℃ and the optimum conditions were identified. The highest concentrations of total saponin (29.723%) and the ginsenoside Rg3 (1.769%), Rg5 (5.979%), and Rg6 (13.473%) were produced at 48 hours. Also, when tienchi seng was subjected to the ultrasonic thermal fusion (100℃) process, the concentrations of total saponin (30.578%), ginsenoside Rg3 (2.392%), Rg5 (6.614%), and Rg6 (13.017%) were highest at 36 hours. On the other hand, the 2-hour heat-processed extract and 2-hour ultrasonic thermal fusion-processed extract did not contain ginsenoside Rg3, Rg5, and Rg6. The ultrasonic thermal fusion process had an extraction yield that was approximately 1.26 times greater than that of the heat process. These results indicate that the highly functional tienchi seng extracts created through the ultrasonic thermal fusion process are more industrially useful than those produced using the heat process.