• Title/Summary/Keyword: ginsenoside Rd2

Search Result 252, Processing Time 0.03 seconds

Effect of Microwave Treatment on Korean Ginseng (고려인삼의 마이크로파 처리 효과)

  • Lee, Jae-Hag;Kum, Jun-Seok
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.3
    • /
    • pp.405-410
    • /
    • 2010
  • The effect of microwave treatment on Korean ginseng was studied by measuring the changes in moisture, crude lipid, crude ash, crude protein, total dietary fiber and saponin contents, as well as changes in density, color and microstructure. Korean ginseng was treated with 100 or 200 watts of microwaves for 1 or 3 hrs, respectively, followed by drying using an oven at $60^{\circ}C$ for 96 hrs. The moisture contents decreased to 13.12~10.77% from an initial 76.26%. The amounts of lipid and ash were reduced in proportion to the time of microwave treatment and level of microwave power. The amount of protein in ginseng after microwave treatment did not significantly change. The amount of total dietary fiber increased after microwave treatment and the color of dried ginseng became dark. The amounts of ginsenoside-$Rb_1$, $Rb_2+Rb_3$, Rc, Rd, Re, Rf, $Rg_1$, $Rg_2+Rh_1$ and $Rg_3$ were reduced after treatment with 100 watts of microwave radiation for 1 and 3. The amounts of ginsenoside-$Rb_1$, Rd, Re, Rf, $Rg_1$, $Rg_2+Rh_1$ and $Rg_3$ after treatment with 200 watts of microwave radiation for 1 and 3 hr also reduced. On the other hand, the amounts of ginsenoside-$Rb_2+Rb_3$ and Rc after treatment of ginseng with 200 watts of microwave radiation for 1 and 3 hrs were increased.

Variation of Phenolic Ingredient and Ginsenoside Content in Red ginseng Extract by Acid Treatment (Ascorbic acid 및 citric acid 처리에 따른 홍삼추출물의 페놀성 성분 및 ginsenoside 함량 변화)

  • Kong, Yeon-Hee;Rho, Jeong-Hae;Cho, Chang-Won;Kim, Mi-Hyun;Lee, Young-Chul;Kim, Sung-Soo;Lee, Pyeong-Jae;Choi, Sang-Yoon
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.194-198
    • /
    • 2009
  • The changes that would occur in a content of five phenolic ingredients and eight ginsenosides in acid-treatedred ginseng extracts were measured in this study. Acid-treated-red ginseng was prepared by treating with 1 M ascorbic acid or citric acid for 20 min. As a result, the contents of esculetin and quercetin in citric acid-treated-red ginseng increased by 3.5 times and 2.0 times, respectively, compared with control red ginseng. However, all phenolic ingredients decreased after treatment with ascorbic acid. In addition, the contents of ginsenoside Rg$_3$, Rh$_2$, Rd increased but those of Rb$_1$, Rc, Re, Rf, Rg$_1$ decreased after acid treatment. Although these tendency of results are similar, the rate of change of ginsenosides in citric acid-treated-red ginseng was higher than in ascorbic acid-treated-red ginseng. These results indicated that citric acid is more effective in the conversion of ginseng ingredients than ascorbic acid.

Process Optimization of Ginseng Berry Extract Using Mixed Solvent and its Ginsenoside Analysis (혼합용매를 이용한 진생베리 추출물 최적 공정 개발 및 추출물의 진세노사이드 분석)

  • Ha, Yoo-jin;Kim, Mee-Ree;Yoo, Sun-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7794-7800
    • /
    • 2015
  • Ginsenosides in ginseng berry has been known as functional materials showing physiological effect to the human. Specially, ginseng berry contains plenty of ginsenoside Re, but the study of extraction processes were not enough performed. Accordingly, the purpose of this study was to establish the optimized extraction process for obtaining ginsenoside Re from ginseng berry. The extraction process of ginsenosides was performed in 250 mL extraction flask containing 150 solvent and 10 g of dried ginseng berry. The extracted ginsenoside Re, Rg1 and Rd and total crude ginsenosides from ginseng berry were evaluated by TLC according to the treated conditions (the ratio of alcohol to water, extraction temperature, extraction period, and extraction times). Optimized conditions for extraction was 70% to 30% of the ratio of alcohol to water, $80^{\circ}C$ of extraction temperature, 4 h of extraction period, and 2 times of extraction frequency. The amount of total crude ginsenosides of the extract obtained from the optimized process was 88.6 mg/g based on dried ginseng berry. The composition of ginsenosides from the extracted was 5.5% of Rb1, 5.2% of Rc, 14.3% of Rd, 51.5% of Re, 8.1% of Rf, and 15.7% of Rg1. A protopanaxtriol ginsenosides of whole ginsenosides extracted was about 80%.

The Bioconversion of Red Ginseng Ethanol Extract into Compound K by Saccharomyces cerevisiae HJ-014

  • Choi, Hak Joo;Kim, Eun A;Kim, Dong Hee;Shin, Kwang-Soo
    • Mycobiology
    • /
    • v.42 no.3
    • /
    • pp.256-261
    • /
    • 2014
  • A ${\beta}$-glucosidase producing yeast strain was isolated from Korean traditional rice wine. Based on the sequence of the YCL008c gene and analysis of the fatty acid composition, the isolate was identified as Saccharomyces cerevisiae strain HJ-014. S. cerevisiae HJ-014 produced ginsenoside Rd, $F_2$, and compound K from the ethanol extract of red ginseng. The production was increased by shaking culture, where the bioconversion efficiency was increased 2-fold compared to standing culture. The production of ginsenoside $F_2$ and compound K was time-dependent and thought to proceed by the transformation pathway of: red ginseng extract ${\rightarrow}Rd{\rightarrow}F_2{\rightarrow}$ compound K. The optimum incubation time and concentration of red ginseng extract for the production of compound K was 96 hr and 4.5% (w/v), respectively.

Antioxidative effect of active components of red ginseng

  • Kyu Nam;Kim, Jung-Sun;Baek, Bong-Sook;Kim, Yu-Jung;Chung, Hae-Young
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.224-224
    • /
    • 1996
  • 홍삼 총 사포닌 투여군은 대조군과 비교시 total free radical 및 malondialdchydc 농도는 유의상 있게 감소되었으며, 단백질의 carbonyl 농도는 다소 감소하는 경향을 나타내었다. 그리고 홍삼 총 사포닌 투여군의 경우 Cu, Zn-SOD, catalasc, GSII reductase 등의 항산화 효소와 nonprotein-SH가 대조군 보다 증가되었다. 홍삼 총 사포닌의 구성성분들인 ginsenoside Rb$_1$, Rb$_2$, Rc, Rd, Re, Rg$_1$, Rh$_1$, Rh$_2$, Rf 중 ginsenoside Rh$_2$는 catalase 활성을 대조군보다 유의성있게 증가시켰으며, ginsenoside Rh$_1$ 및 Rc의 경우 GSII peroxidase 활성이 증가하는 경향을 나타내었다. 그리고 Cu, Zn-SOD의 경우 ginsenoside Rc는 대조군보다 유의성있게 감소시켰으며, GSII reductase의 경우 유의성있는 변화는 관찰되지 않았다.

  • PDF

Mass Culture and Ginsenoside Production of Ginseng Hairy Root by Two-Step Culture Process (2계단 배양방법을 이용한 인삼 모상근의 대량배양과 Ginsenoside 생산)

  • Ko, Kyeong-Min;Yang, Deok-Chun;Park, Ji-Chang;Choi, Kang-Ju;Choi, Kwang-Tae;Hwang, Baik
    • Journal of Plant Biology
    • /
    • v.39 no.1
    • /
    • pp.63-69
    • /
    • 1996
  • A hairy root clone of Panax ginseng C.A. Meyer, HRB-15 was cultured iu various conditions with 3 L bubble type bioreactor to enhance both growth and ginsenoside production. The hairy roots were more rapidly grown under the dark condition than under the light condition. However, total amount of ginsenoside of hairy roots cultured under the light for 30 days increased 2 folds as compared with the dark condition and was 1.10% based on 6 ginsenosides. Especially, ginsenoside-Re was significantly increased and some ginsenosides except for ginsenoside-Re was slightly reduced. Also, the growth of hairy roots decreased about 30% as compared with the dark condition. In contrast, addition of sodium acetate led to decreased production of ginsenoside and growth of hairy roots under light condition. The influence of potassium dihydrogenphosphate concentration was examined in MS medium and a 1.25 mM concentration was found to be the most appropriate for growth and ginsenoside production under light condition. Two-step process of hairy roots culture with yeast elicitation or without ammonia in culture medium was developed to enhance growth and giusenoside synthesis. $50\;\mu\textrm{g}$ of yeast elicitor per g of fresh weight showed a synergistic effect on the ginsenoside synthesis of hairy roots on 20 days after culture. At that time, the content of total ginsenoside was 1.15%, while the growth of hairy roots decreased 21 % as compared with the dark condition. In addition, when elimination of ammonia on 20 days after culture, the content of total ginsenoside was 1.26% with significant increment of ginsenoside-Rd (0.27%) in addition to ginsenoside-Re and the growth of hairy roots decreased 10% as compared with the dark condition. In this system, we have demonstrated a unique two-step process of hairy root cultures to maximize biomass and secondary metabolites. It has found possibility to enhance ginsenosides production by growing hairy roots in this method.

  • PDF

Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: ginsenoside conversion and antioxidant effects

  • Jung, Jieun;Jang, Hye Ji;Eom, Su Jin;Choi, Nam Soon;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.20-26
    • /
    • 2019
  • Background: Ginsenosides, which are bioactive components in ginseng, can be converted to smaller compounds for improvement of their pharmacological activities. The conversion methods include heating; acid, alkali, and enzymatic treatment; and microbial conversion. The aim of this study was to determine the bioconversion of ginsenosides in fermented red ginseng extract (FRGE). Methods: Red ginseng extract (RGE) was fermented using Lactobacillus plantarum KCCM 11613P. This study investigated the ginsenosides and their antioxidant capacity in FRGE using diverse methods. Results: Properties of RGE were changed upon fermentation. Fermentation reduced the pH value, but increased the titratable acidity and viable cell counts of lactic acid bacteria. L. plantarum KCCM 11613P converted ginsenosides $Rb_2$ and $Rb_3$ to ginsenoside Rd in RGE. Fermentation also enhanced the antioxidant effects of RGE. FRGE reduced 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and reducing power; however, it improved the inhibition of ${\beta}$-carotene and linoleic acid oxidation and the lipid peroxidation. This suggested that the fermentation of RGE is effective for producing ginsenoside Rd as precursor of ginsenoside compound K and inhibition of lipid oxidation. Conclusion: This study showed that RGE fermented by L. plantarum KCCM 11613P may contribute to the development of functional food materials.

Bioavailability and Anti-inflammatory Effect of Fermented Red Ginseng in BALB/c Mouse (BALB/c 마우스에서 발효 홍삼 Ginsenoside의 생체이용율과 항염효과)

  • Lee, Eun Kyu;Bae, Chu Hyun;Kim, Yu Jin;Park, Soo-Dong;Shim, Jae-Jung;Yu, Youngbob;Lee, Jung-Lyoul
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.433-442
    • /
    • 2021
  • The fermented red ginseng by microorganism is known to increase pharmacological activity in vivo. To evaluate the bioavailablity of red ginseng fermented by probiotics, we conducted the pharmacokinetic study of ginsenoside Rb1, Rd and total ginsenosides (TG, ginsenosides Rb1 + Rd + Rg1 + F2 + Rg3 + compound K) in BALB/C mice. The AUC value of ginsenoside Rb1 in mice serum administered with 600mg/kg drugs showed 21.93 ± 14.68 ng·h/mL (RGw, water extract), 275.211 ± 110.04 ng·h/mL (RGe, 50% ethanol extract) and 404.91 ± 162.57 ng·h/mL (fRGe, fermented red ginseng extract). Analysis of ginsenoside Rd also showed a higher ACU value in fRGe than in RGw or RGe. And the AUC value of total ginsenosides in mice serum treated with 600 mg/kg were observed 42.12 ± 23.44 ng·h/mL (RGw), 321.44 ± 133.5 ng·h/mL (RGe) and 537.33 ± 229.01 ng·h/mL (fRGe), respectively. Cmax value of ginsenoside Rb1 in mice administered with 600mg/kg were observed 3.67 ± 3.34 ng/mL (RGw), 23.27 ± 8.81 ng/mL (RGe) and 25.52 ± 7.29 ng/mL (fRGe). These results can be considered that the fermented red ginseng has more bioavailability than that of unfermented red ginseng. In quantitative analysis of the inflammation-related cytokines IL-1β and TNF, no significant difference was found between the fermented red ginseng (fRGe) and the red ginseng (RGe).

Development and Verification of New Ginseng Processing Methods (가공방법을 달리한 홍삼의 품질 특성)

  • Ye Eun-Ju;Kim Soo-Jung;Park Chang-Ho;Gwakg Hee-Boo;Beal Man-Jong
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.15 no.4
    • /
    • pp.413-418
    • /
    • 2005
  • This study was performed to develop new processing methods and products from steamed ginseng with rice wine. The brownnes, turbidity and the total ginsenoside in ginseng were examined All the values of examined premonitory materials, intermediate products, coloring matters and turbidity were increased as the steaming continued The quantity of total ginsenoside was increased when the steaming with rice wine continued in A1 - A9($1^{st}$ traditional rice wine steamed red ginseng: $A1{\~}9^{th}$ traditional rice wine steamed-red ginseng:A9). The quantity of ginsenoside-Rc, ginsenoside-Rd, ginsenoside-Re in Al were increased as the steaming continued. The quantity of ginsenoside-$Rg_2$ and ginsenoside-$Rg_3$ was increased when the number of steaming increased.

  • PDF

Antioxidant Activity and Ginsenoside Pattern of Fermented White Ginseng

  • Lim, Seong-Il;Cho, Chang-Won;Choi, Ung-Kyu;Kim, Young-Chan
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.168-174
    • /
    • 2010
  • Ethanol and water extracts of white and fermented ginseng were prepared and their ginsenoside composition and antioxidant effects were assessed. The main ginsenosides in white ginseng were $Rb_1$ > Re > $Rg_1$, and those in fermented ginseng were $Rb_2+Rb_3$ > Rd > $Rg_1$. Ginsenosides Rd and $Rg_3$ in fermented ginseng were enriched 11 and 58 times, respectively, over that in white ginseng through fermentation with five Bacillus spp. The greatest levels of 2-deoxyribose and superoxide anion dismutase-like activities were found in 50% ethanol extracts of fermented ginseng. Thus, these data suggest that white ginseng has the greatest free radical scavenging activity and that fermented ginseng has the highest antioxidant activity.