• Title/Summary/Keyword: ginseng yield

Search Result 418, Processing Time 0.023 seconds

Variations of Agronomic Characteristics of Cultivars and Breeding Lines in Korean Ginseng (Panax ginseng C. A. Mey.) (인삼 품종과 육성계통의 작물학적 특성 변이)

  • Bang, Kyong-Hwan;Seo, A-Yeon;Kim, Young-Chang;Jo, Ick-Hyun;Kim, Jang-Uk;Kim, Dong-Hwi;Cha, Seon-Woo;Cho, Yong-Gu;Kim, Hong-Sig
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.4
    • /
    • pp.231-237
    • /
    • 2012
  • These studies were conducted to provide basic information on Korean ginseng cultivars and breeding lines (Panax ginseng C. A. Mey.) and to identify the variations that can be utilized in ginseng breeding programs. The agronomic characteristics was used to clarify the genetic relationships among Korean ginseng cultivars and breeding lines and to classify them into distinct genetic groups. Angle of petiole and number of fibrous root showed a wide variation from $15.0{\sim}67.8^{\circ}$ and 0~5, respectively. The average plant length was 54.2cm with a range of 37.9~64.8cm and the average stem diameter was 5.6mm with a range of 4.0~7.5mm. The average stem length was 31.9cm with a range of 21.8~37.9cm and the average root weight was 38.1 g with a range of 23.0~52.0 g. The 24 Korean ginseng cultivars and breeding lines were classified into 4 groups based on agronomic characteristics using the complete linkage cluster analysis. The I, II, III and IV groups included the 60.8%, 7.4%, 13.1% and 8.7% of the cultivars and breeding lines, respectively. The breeding lines in group I could be characterized as the group with the highest growth characters and yield components, such as plant length, stem diameter and root weight. The root weight, the yield component, had highly significant positive correlations with stem diameter, plant length and stem length.

Characteristics of New Cultivars in Panax ginseng C.A. Meyer (고려인삼 신품종 특성)

  • Lee, Sung-Sik;Lee, Jang-Ho;Ahn, In-Ok
    • Proceedings of the Ginseng society Conference
    • /
    • 2005.11a
    • /
    • pp.3-18
    • /
    • 2005
  • This paper reports the characteristics of 8 new cultivars for selected from Korean ginseng. The occurance of multi stems were the highest in Yunpoong(45%) and the lowest in Gumpoong(7%), but growth of aerial parts were the highest in Gumpoong and the lowest In Yunpoong among new cultiyars. The ratio of seeds harvest were the highest in Gumpoong(85.4%) and the lowest in Chunpoong(69.1%), but number of seeds per plant were the highest in Yunpoong(108.3ea) and the lowest in Chunpoong(77.5ea) among new cultivars. The ratio of leaf burning were the highest in Chunpoong but the lowest in Yunpoong among new cultivars. In weight distribution of the different parts of the ginseng roots, the ratio of main root were high in Jakyungjong(63.1%) but low in new cultivars(49%-55.9%), but the ratio of lateral root were high in new cultivars(19.3-23.3%), but low in Jakyungjong(13.2%), the ratio of fine root were not different. Root yield declined in the order of Yunpoong, Gumpoong, Gopoong, Chunpoong, Sunpoong, Jakyungjong. The length of main root were the longest in Chunpoong(8,0cm) but the shortest in Yunpoong(6,4cm), The ratio of rusty-root was low in new cultivars(0,2-9,5%), but high in Jakyungiong(16,3%). The grade of red ginseng roots decreased in the order of Chunpoong, Gumpoong, Gopoong, Sunpoong, Yunpoong, Cheongsun, Jakyungjong. The total ginsenoside contents per dry weight in main roots was high in Gumpoong(8.53mg), Yunpoong(8.13mg), Gopoong(7,47mg), but low in Chunpoong(5.73mg), Sunpoong(4.87mg).

  • PDF

A Guideline to Land Suitability Used Soil Physical Characteristics and Yield potential in Panax Ginseng C.A. Mayer (인삼 수량과 토양의 물리적 특성을 이용한 재배적지 기준 설정)

  • Hyun, Dong-Yun;Hyeon, Geun-Soo;Yeon, Byeong-Yeol;Kang, Seung-Weon;Kim, Young-Cheol;Lee, Kwang-Won;Kim, Seong-Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.421-426
    • /
    • 2009
  • The purpose of this study was to identify soil physical characteristics as guideline for high yield potential in ginseng cultivated field which produced 6 years root. Harvest yields of ginseng to be divided by parent rock was in order of phyllite and red shale 3.1 kg/$3.3\;m^2$ > granite and gneiss schist 3.0 kg > basalt 2.6 kg > porphyry 2.2 kg in upland and forest soil. Also, with classified by topography, it was in order of foot slope and alluvial fan 3.2 kg/$3.3\;m^2$ > valley 3.0 kg > low hill 2.9 kg > hill, lave flow and dilluvial terrace 2.8 kg in survey tilth. Class determination of soil texture, it was in order of sandy loam 3.1 kg/$3.3\;m^2$ > loam and silt loam 3.0 kg > clay loam 2.9 kg > silt clay loam 2.8 kg in survey tilth. Slope condition of farming land, in case of sloping (2~7%), it was 3.1 kg/$3.3\;m^2$ but deep sloping (15~30%) caused decreasing harvest yield. In drainage classes (excessively, well and moderately well), there was no significantly different in harvest yields. Relationship between harvest yield and soil series, Production sites as yielding 3.0 kg/$3.3\;m^2$ were seven sites, also it was contained 14 soil series. Production sites as yielding 2.5~3.0 kg/$3.3\;m^2$ were eleven sites, it was contained 16 soil series. Production sites as yielding 2.0~2.5 kg/$3.3\;m^2$ were 10 sites, it was contained 4 soil series.

Optimization of Submerged (Ginseng Root Culture Conditions for the Production of Saponin (사포닌 생산을 위한 인삼 root 액체배양조건의 최적화)

  • 오훈일;장은정;이시경
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.118-122
    • /
    • 2000
  • This study was carried out to determine the optimal liquid medium composition of ginseng (Panax ginsengC.A. Meyer) root induced by growth regulators in order to improve the yield of saponin production. Submerged culture conditions were optimized using the fractional factorial design with 4 factors and 3 levels by a RSM computer program The effects of various pH values of medium, sucrose, nitrogen and phosphate concentration on the saponin content of the ginseng root were investigated. The optimum phosphate concentration determined by a partial differentiation of the model equation, pH of medium, sucrose and nitrogen concentration were phosphate 93 mg/L, pH 5.5, sucrose 5% and nitrogen 50 mg/L, respectively. Under these conditions, the predicted saponin content of ginseng root was estimated at 0.308%.

  • PDF

Manufacturing Method of Red Ginseng Extract Pills by Centrifugal Coating Granulating System (원심분리 코팅방식을 이용한 홍삼농축액 환의 제조방법)

  • Kwak, Yi-Seong;Choi, Young-Gi;Kwon, Hyun-Jeong;Kim, Na-Mi
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.229-233
    • /
    • 2009
  • The centrifugal coating granulating system, a new method of preparing red ginseng extract pills, has been developed. The red ginseng extract was first powdered with 85.5% of edible ethanol and dried for 3 to 4 hours at 50$^{\circ}C$. The powders were fed in chamber of centrifugal coating granulating system and then granulated, sequentially. The centrifugal system operated at 20 to 50$^{\circ}C$ of inlet temperature, 1 to 1,000 g/min of feeding speed, 60 to 70$^{\circ}C$ of atmosphere temperature of intake, 3.0 to 4.0 bar of spray atmosphere pressure, 1,000 to 1,500 rpm of centrifugal plate speed and 25 to 40$^{\circ}C$ of outlet temperature. The product yield was about 85% and preparation time was 7 to 8 hours. Especially, major ginsenoside components of red ginseng were not decomposed after processing of red ginseng extract pill.

Alteration of Panax ginseng saponin composition by overexpression and RNA interference of the protopanaxadiol 6-hydroxylase gene (CYP716A53v2)

  • Park, Seong-Bum;Chun, Ju-Hyeon;Ban, Yong-Wook;Han, Jung Yeon;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • Background: The roots of Panax ginseng contain noble tetracyclic triterpenoid saponins derived from dammarenediol-II. Dammarene-type ginsenosides are classified into the protopanaxadiol (PPD) and protopanaxatriol (PPT) groups based on their triterpene aglycone structures. Two cytochrome P450 (CYP) genes (CYP716A47 and CYP716A53v2) are critical for the production of PPD and PPT aglycones, respectively. CYP716A53v2 is a protopanaxadiol 6-hydroxylase that catalyzes PPT production from PPD in P. ginseng. Methods: We constructed transgenic P. ginseng lines overexpressing or silencing (via RNA interference) the CYP716A53v2 gene and analyzed changes in their ginsenoside profiles. Result: Overexpression of CYP716A53v2 led to increased accumulation of CYP716A53v2 mRNA in all transgenic roots compared to nontransgenic roots. Conversely, silencing of CYP716A53v2 mRNA in RNAi transgenic roots resulted in reduced CYP716A53v2 transcription. HPLC analysis revealed that transgenic roots overexpressing CYP716A53v2 contained higher levels of PPT-group ginsenosides ($Rg_1$, Re, and Rf) but lower levels of PPD-group ginsenosides (Rb1, Rc, $Rb_2$, and Rd). By contrast, RNAi transgenic roots contained lower levels of PPT-group compounds and higher levels of PPD-group compounds. Conclusion: The production of PPD- and PPT-group ginsenosides can be altered by changing the expression of CYP716A53v2 in transgenic P. ginseng. The biological activities of PPD-group ginsenosides are known to differ from those of the PPT group. Thus, increasing or decreasing the levels of PPT-group ginsenosides in transgenic P. ginseng may yield new medicinal uses for transgenic P. ginseng.

Effect of Lime application on Yield and Chemical composition of Burley tobacco (Nicotiana tabacum L.) in pot experiment. (석회 시용이 Burley종 담배의 수량과 화학성분에 미치는 영향)

  • Kim, Yong-Ok;Choi, Jyung
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.10 no.2
    • /
    • pp.99-107
    • /
    • 1988
  • Pot experiment was conducted to find out the effect of lime application on yield and chemical composition of burley tobacco in 1986, Lime increased exchangeable calcium and pH of soil, but decreased Al, Fe and Mn concentrations. Yield was increased by lime application, however lime could not be caused to yield increasing in the soil with high calcium contents. Cored leaves of limed Plot contained higher Mg. K, total nitrogen, NO3-nitrogen, water soluble and insoluble ash, alkalinity number of water soluble and insoluble ash, citric and malic acid, but lower Fe, Mn, protein-nitrogen, NH3-nitrogen, nicotine petroleum ether extract, palmitic and linolenic acid concentrations than those of unlined plot. The linoleic acid and volatile neutral constituents of cured leaves were not affected by liming. Lime increased yield, however it did not affect leaf duality in respect to chemical characteristics, suggesting that liming should be necessary for tobacco cultivation.

  • PDF

Screening rhizobacteria for biological control of root rot and Phytophthora blight on glnseng.

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.103.2-104
    • /
    • 2003
  • Ginseng (Panax ginseng) is one of the most widely cultivated medicinal herbs in Korea. During 3 or 5 years cultivation of ginseng, yield losses can reach as high as 30-60% due to numerous diseases in Korea. Among 106 Bacillus strains isolated from various plant internal roots, we selected three promising biocontrol agents by screening against root rot caused by Cylindrocarpon destructan in a greenhouse. Preinoculation of selected isolates to seed or one-year-old root resulted in stimulation of shoot and/or root growth of seedlings, and control of root rot in infested soils with Cylindronrpon destructans (P=0.05). Furthermore, drenching of selected isolates on seedling-growing pots reduced the incidence of Phytophthora blight when the seedlings were challenged with zoospores of Phytophthora cactorum (P=0.05). However, isolates B1141 and B1142 did not show any antifungal activity against various soilborne pathogens while B1146 did in vitro. Our results provide an insight that rhizobacteria can induce resistance against various plant diseases on ginseng even if any resistant breeds have been unknown on ginseng yet.

  • PDF

Management of Radiation Injuries by Panax ginseng Extract

  • Verma, Preeti;Jahan, Swafiya;Kim, Tae-Hawn;Goyal, Pradeep Kumar
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.261-271
    • /
    • 2011
  • Chemical radiation protection is an important strategy to protect living beings against the deleterious effects of radiation. In the present study, the radioprotective effect of hydro-alcoholic extract of Panax ginseng extract (PGR-HAE) was studied on radiation-induced deleterious alterations in Swiss albino mice. Oral administration of such extract (25 mg/kg b wt/day/animal) for 5 consecutive days, half an h. before whole-body exposure to 6 Gy gamma radiation, enhanced the 30 days survival and also inhibited the radiogenic sickness, weight loss and life shortening. PGR-HAE ameliorated radiation induced depletion in blood constituents at different necropsy intervals between 12 h to 30 d, and significantly increased the number of femoral spleen colony forming units that survived after irradiation. Furthermore, it checked depletion of glutathione and antioxidant enzymes (superoxide dismutase, catalase, and glutathione S-transferase) as well as elevation of lipid peroxidation (LPO) level in blood and liver. The significant reduction in the yield of LPO demonstrates that PGR-HAE protects the membranes against radiation-induced oxidative damage. These findings conclude that such plant extract provides significant radioprotection, and it may be potentially valuable in the prevention of injuries caused during planned and unplanned radiation exposure.

Production of ginsenoside F1 using commercial enzyme Cellulase KN

  • Wang, Yu;Choi, Kang-Duk;Yu, Hongshan;Jin, Fengxie;Im, Wan-Taek
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.121-126
    • /
    • 2016
  • Background: Ginsenoside F1, a pharmaceutical component of ginseng, is known to have antiaging, antioxidant, anticancer, and keratinocyte protective effects. However, the usage of ginsenoside F1 is restricted owing to the small amount found in Korean ginseng. Methods: To enhance the production of ginsenoside F1 as a 10 g unit with high specificity, yield, and purity, an enzymatic bioconversion method was developed to adopt the commercial enzyme Cellulase KN from Aspergillus niger with food grade, which has ginsenoside-transforming ability. The proposed optimum reaction conditions of Cellulase KN were pH 5.0 and $50^{\circ}C$. Results: Cellulase KN could effectively transform the ginsenosides Re and Rg1 into F1. A scaled-up biotransformation reaction was performed in a 10 L jar fermenter at pH 5.0 and $50^{\circ}C$ for 48 h with protopanaxatriol-type ginsenoside mixture (at a concentration of 10 mg/mL) from ginseng roots. Finally, 13.0 g of F1 was produced from 50 g of protopanaxatriol-type ginsenoside mixture with $91.5{\pm}1.1%$ chromatographic purity. Conclusion: The results suggest that this enzymatic method could be exploited usefully for the preparation of ginsenoside F1 to be used in cosmetic, functional food, and pharmaceutical industries.