• Title/Summary/Keyword: ginseng vinegar

Search Result 33, Processing Time 0.023 seconds

Change of Ginsenoside Composition in Ginseng Extract by Vinegar Process

  • Ko, Sung-Kwon;Lee, Kyung-Hee;Hong, Jun-Kee;Kang, Sung-An;Sohn, Uy-Dong;Im, Byung-Ok;Han, Sung-Tai;Yang, Byung-Wook;Chung, Sung-Hyun;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.509-513
    • /
    • 2005
  • The purpose of this study was to develop a new preparation process of ginseng extract using high concentrations of ginsenoside $Rg_3$, a special component in red ginseng. From when the ginseng saponin glycosides transformed into the prosapogenins chemically, they were analyzed using the HPLC method. The ginseng and ginseng extract were processed with several treatment conditions of an edible brewing vinegar. The results indicated that ginsenoside $Rg_3$ quantities increased over 4% at the pH 2-4 level of vinegar treatment. This occurred at temperatures above $R90^{\circ}C$, but not occurred at other pH and temperature condition. In addition, the ginseng and ginseng extract were processed with the twice-brewed vinegar (about 14% acidity). This produced about 1.5 times more ginsenoside $Rg_3$ than those processed with regular amounts of brewing vinegar (about 7% acidity) and persimmon vinegar (about 3% acidity). Though the white ginseng extract was processed with the brewing vinegar over four hr, there was no change for ginsenoside $Rg_3$. However, the VG8-7 was the highest amount of ginsenoside $Rg_3$ (4.71%) in the white ginseng extract, which was processed with the twice-brewed vinegar for nine hr. These results indicate that ginseng treated with vinegar had 10 times the quantity of ginsenoside $Rg_3$, compared to the amount of ginsenoside $Rg_3$ in the generally commercial red ginseng, while ginsenoside $Rg_3$ was not found in raw and white ginseng.

Studies on Ginseng Vinegar (인삼식초에 관한연구)

  • 김승겸
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.5
    • /
    • pp.447-454
    • /
    • 1999
  • Ginseng-vinegars were produced by the fermentation of 5% ethanol solution contained ginseng, red ginseng, ginseng marc and red ginseng marc using Acetobacter aceti 3281 for 26 days at 35$^{\circ}C$. The ginseng and red ginseng vinegar contained 0.236mg/ml of total sugar 0.236mg/ml of reducing sugar and 0.05% of ethanol and 1.005 of specific gravity 8,58CFU of viable cell count 3,24 of pH and 5.11% of acidity. Whereas the vinegars produced using the water-extracted red ginseng marc and the ethanol-extracted red ginseng marc were consisted of total sugar was 1.27mg/ml and 1.60mg/ml reducing sugar was 0.077mg/ml and 0.725mg/ml specific gravity was 1.001 and 1.004 the number of viable cells was 8.51CFU/ml and 8.1CFU/ml pH was 2.81 and 2.89 acidity was 5.18% and 5.32% respectvely ethanol concentration was 0.05% in both cases. In five-grade scoring test of sensory evaluation, it was estimated favorable that each vinegar made by were-extracted red ginseng marc, ethanol-extracted red ginseng marc ginseng and red ginseng ginseng from 0.5 to 32% of water-and ethanol-extract red ginseng was extracted with 10% white vinegar for 30 days. The best sensory vinegars were obtained that ginseng of 0.4~1.6% above red glnsend of 0.8% water-extracted red ginseng marc of 0.8~1.6% and ethanol-extracted red ginseng marc of 0.4~1.6% added in 10% white vinegar respectively.

  • PDF

Changes in ginsenoside composition of ginseng berry extracts after a microwave and vinegar process

  • Kim, Shin-Jung;Kim, Ju-Duck;Ko, Sung-Kwon
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.269-272
    • /
    • 2013
  • MGB-20 findings show that the ginseng berry extracts that had been processed with microwave and vinegar for 20 min peaked in the level of ginsenoside Rg2 (2.28%) and Rh1 (1.28%). MGB-1 peaked in the level of ginsenoside Rg3 (1.13%) in the ginseng berry extract processed with microwave and vinegar for 1 min.

The Change of Ginsenoside Composition in White Ginseng and Fine White Ginseng Extract by the Microwave and Vinegar Process (백삼 및 백미삼 추출물의 초단파 및 식초 처리에 의한 인삼 사포닌 성분 변화)

  • Jo, Hee Kyung;Im, Byung Ok;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.77-83
    • /
    • 2014
  • The purpose of this study is to develop a new preparation process of ginseng extracts having high concentrations of ginsenoside $Rg_3$, $Rg_5$ and $Rk_1$, a special component of Red ginseng. Chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by the HPLC. Extracts of White ginseng (Panax ginseng) and Fine White ginseng were processed under several treatment conditions including microwave and vinegar (about 14% acidity) treatments. Results of those treatments showed that the quantity of ginsenoside $Rg_3$ increased by over 0.6% at 4 minutes of pH 2~4 vinegar and microwave treatments. The results of processing with MWG-4 indicate that the Microwave and vinegar processed white ginseng extracts (about 14% acidity) that had gone through 4-minute treatments were found to contain the largest amount of ginsenoside $Rg_3$ (0.626%), $Rg_5$ (0.514%) and $Rk_1$ (0.220%). Results of treatments with MFWG-5 showed that the Fine White ginseng extracts that had been processed with microwave and vinegar (about 14% acidity) for 5 minutes were found to contain the largest amount of ginsenoside $Rg_3$ (4.484%), $Rg_5$ (3.192%) and $Rk_1$ (1.684%). It is thought that such results provide basic information in preparing White ginseng and Fine White ginseng extracts with functionality enhanced.

The Change of Ginsenoside Composition in Ginseng Leaf and Stem Extract by the Microwave and Vinegar Process (인삼 잎 줄기 추출물의 초단파 및 식초 처리에 의한 인삼 사포닌 성분 변화)

  • Kim, Shin Jung;Kim, Ju Duck;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.149-153
    • /
    • 2013
  • The purpose of this study was to develop a new preparation process of ginseng extract with the high concentration of prosapogenin, the specific component in Red ginseng. Chemical transformation from the ginseng saponin glycosides to the prosapogenin was analyzed by the HPLC. The extracts of ginseng leaf and stem were processed at the several treatment conditions of the microwave and vinegar(about 14% acidity). MGLS-20 findings show that the ginseng leaf and stem extracts that had been processed with microwave and vinegar for 20 minutes peaked in the level of ginsenoside $Rg_3$(0.906%). MGLS-25 peaked in the level of ginsenoside $Rg_5$(0.329%) in the ginseng leaf and stem extract processed with microwave and vinegar for 25 minute. And the other kinds of ginseng prosapogenin did not show a higher content.

The Change of Ginsenoside Composition in American Ginseng (Panax quinquefolium) Extract by the Microwave and Vinegar Process (서양삼 추출물의 초단파 및 식초 처리에 의한 인삼 사포닌 성분 변화)

  • Jo, Hee Kyung;Gwak, Hyeon Hui;Im, Byung Ok;Cho, Soon Hyun;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.107-112
    • /
    • 2014
  • The purpose of this study is to develop a new preparation process of American ginseng (Panax quinquefolium) extract featuring high concentration of ginsenoside $Rg_3$, $Rg_5$, and $Rk_1$, Red ginseng special components. Chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by the HPLC. Extracts of American ginseng were processed under several treatment conditions of microwave and vinegar (about 14% acidity). The results showed that the quantity of ginsenoside $Rg_3$ increased by over 0.9% at the 20 minutes of the pH 2~4 vinegar and microwave American ginseng ethanol extract compared with other process times. The result of MAG-20 indicates that the American ginseng microwave and vinegar-processed American ginseng extracts (about 14% acidity) treated for 20 minutes produced the highest amount of ginsenoside $Rg_3$ (0.969%), $Rg_5$ (1.071%), and $Rk_1$ (0.247%). Besides, MAG-15 indicates that the microwave - and vinegar-processed American ginseng extracts (about 14% acidity) treated for 15 minutes produced the highest amount of ginsenoside $Rg_3$ (0.772%), $Rg_5$ (1.330%), and $Rk_1$ (0.386%). This indicates that American ginseng treated with microwave and vinegar had the quantity of the ginsenoside $Rg_3$ over 32 times the amount of the ginsenoside $Rg_3$ (which was not found in raw and American ginsengs) in the average commercial Red ginseng.

Studies on Wax Gourd - Ginseng Vinegar (동아홍삼식초에 관한 연구 - 1)

  • 안용근;김승겸;신철승
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.1
    • /
    • pp.52-58
    • /
    • 2001
  • The 7.5% wax gourd-added mash composed of 7.5% brown rice. 1.5% malt. 3% red ginseng and 6% ethanol solution, and mash which 7.5% wax gourd was not added were fermented as vinegar and produced acetic acid, with the use of Acetobacter aceti 3281, at 25$\^{C}$ for 150 days. As the result, vinegar of no added-wax gourd was shown containing 3.3 % total sugar, 1.5% reducing sugar, 11.5 absorbance at 280nm, 2.7$\mu$M/ml amino acid, and 0.5 % ethanol, 3.0 pH, 4.59% acidity, 5.2% organic acid. The 7.5% wax gourd-added vinegar showed 2.3% of total sugar, 1.1% reducing sugar, 10.8 absorbance at 280nm, 2.1 $\mu$ M/ml amino acid, 1.2% ethanol, 3.1 pH, 4.61% acidity, 4.9% organic acid. In preference test of 5-points in full, red ginseng vinegar showed 3.86, and wax gourd-red ginseng vinegar 3.66.

  • PDF

Change in the Textural Properties of Fresh Ginseng after Its Immersion in a Calcium Carbonate Solution (수삼의 탄산칼슘용액 침지에 따른 물성 변화)

  • Choi, In-Hag;Kim, Hak-Yoon;Lee, Gee-Dong
    • Food Science and Preservation
    • /
    • v.20 no.1
    • /
    • pp.76-80
    • /
    • 2013
  • This study investigated the textural changes after the calcium-pectin bonding of ginseng roots and their vinegar and calcium solution immersion. The strength and breakdown of the ginseng roots increased according to the increase in the calcium carbonate concentration, with the highest in the 0.7~1.0% calcium carbonate. The hardest and softest ginseng roots were obtained in the 1.0% calcium carbonate concentration. The strength, brittleness and hardness of the ginseng roots that were soaked in 1% calcium carbonate and 5~6% acidity vinegar continued to increase with the long-term storage of the ginseng root drink. The softness of the ginseng root that was dipped in 5% acidity vinegar with 1.0% calcium carbonate decreased with the long-term storage of the ginseng root drink. Thus, calcium and vinegar immersion of ginseng roots could prevent softening and clouding during the long-term storage of the ginseng root drink.

Selection of Environmental Friendly Organic Agricultural Materials for Controlling Ginseng Gray Mold (인삼 잿빛곰팡이병의 친환경방제를 위한 유기농업자재 선발)

  • Kim, Woo Sik;Kim, Jong Seong;Park, Jee Sung;Ahn, In;Park, Kyung Hoon;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.473-479
    • /
    • 2015
  • Background : To control ginseng gray mold, farmers have mainly used inorganic chemical based fungicides. The recent emergence of fungicide resistance has reduced the effectiveness of such control methods. Such pesticides also carry additional problems, such as diffuse pollution. Methods and Results : Six treatments of organic agricultural materials were tested for control of ginseng gray mold, CAPW (Chrysophanic acid + Phytoncide + Wood vinegar), EmEWV (Emodin + Ethanol + Wood vinegar), CEWV (Curcumin + Eugenol + Wood vinegar), Bacillus subtilis, soybean oil and sulfur. The control effect for gray mold by a single application of the agrochemical fungicide industrial Fenhexamid wettable powder (WP) was 84.4%. The control effect by CAPW, EmEWV and CEWV varied between 52.7 - 64.9%. The control effect by B. subtilis, soybean oil, and sulfur were 32.9 - 59.2%. Conclusions : In the field tests, CAPW showed the highest control effects when used before, and at first stage of disease incidence, against ginseng gray mold.

Ripened Persimmon Vinegar with Mountain-cultivated Ginseng Ingestion Reduce Blood Lipids and Enhance Anti-oxidants Capacity in Rats (산양삼 혼입숙성 감식초 섭취에 의한 흰쥐의 혈중지질 감소와 항산화능 개선)

  • Jeon, Byung-Duk;Kim, Pan-Gi;Ryu, Sungpil
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.182-188
    • /
    • 2013
  • In this study we investigated that the mountain-cultivated ginseng into persimmon vinegar fused material on blood lipids and anti-oxidant capacity in rats. A 4-year-old mountain-cultivated ginseng was ripened with 4-year-matured persimmon vinegar, and then it was diluted 5 times and orally administerd to rats. The rats were divided into a control group (CON), a persimmon vinegar group (PV) and a mountain-cultivated ginseng + persimmon vinegar fusion material group (MPV). The body weight was found to be low in MPV, and amount of the stored fats were also low in PV and MPV. Blood lipids were found to be low in PV and MPV compared to the CON. HDL-C (high density lipoprotein cholesterol) was found to be significantly high in these two groups. Liver Cu,Zn-SOD (superoxide dismutase) and GPx (glutathione peroxidase) were CON < PV < MPV, in sequence, with significance. Especially, it was the highest in MPV. Liver MDA (malondialdehyde) concent was MPV < PV, CON, in sequence, with significance. These results suggested that the fusion material lowers blood lipids and enhance anti-oxidant capacity. We carefully thought that it might be used effectively as a health food.