• 제목/요약/키워드: ginseng preparation

검색결과 167건 처리시간 0.018초

인삼(人蔘) 제제(製劑)의 효능(效能)에 관한 연구(硏究) (Studies on the Effectiveness of Ginseng Preparation)

  • 한병훈;박명환;신상철
    • 생약학회지
    • /
    • 제15권2호
    • /
    • pp.98-103
    • /
    • 1984
  • A ginseng preparation consisting of ginseng ext., lycii fructus ext., four vitamins and caffeine was chosen and its efficacy was evaluated with respect to nutritional supplement, antifatigue activity and liver protective action. Animals administered orally in both one-third and three fold doses of the preparation showed no significant increments of their body weights when compared with those of the normal animals, suggesting no supplemental activity. However, the preparation in the above two doses significantly prolonged swimming time to 53 and 63%, respectively. Ginseng and lycii fructus ext. were found to be responsible for the antifatigue activity. And also the preparation significantly inhibited lipid peroxidation of mouse liver after ethanol-induced acute intoxication.

  • PDF

생약복방제 드링크중 인삼 saponin의 확인 및 $Ginsenoside-Rb_1$의 분리 정량 (Identification of Ginseng Saponin and Quantitative Determination of $Ginsenoside-Rb_1$ from Crude Drug Preparation Drink)

  • 최강주;고성룡
    • Journal of Ginseng Research
    • /
    • 제14권2호
    • /
    • pp.112-116
    • /
    • 1990
  • As a part of studies on the quality control of crude drug preparation drinks, ginseng saponins were identified by HPLC. Ginsenoside-Rb1 was determined quantitatively by HPLC. Ginsenoside MeOH/H2O(65:35:10, v/v) on Si-gel plate. Ginsenoside-Rb1 content determined by HPLC on Lichrosorbtract drinks was 57.5-70.4% compared to the content in the red ginseng extract.

  • PDF

Correlation between the Content and Pharmacokinetics of Ginsenosides from Four Different Preparation of Panax Ginseng C.A. Meyer in Rats

  • Jeon, Ji-Hyeon;Lee, Jaehyeok;Lee, Chul Haeng;Choi, Min-Koo;Song, Im-Sook
    • Mass Spectrometry Letters
    • /
    • 제12권1호
    • /
    • pp.16-20
    • /
    • 2021
  • We aimed to compare the content of ginsenosides and the pharmacokinetics after the oral administration of four different ginseng products at a dose of 1 g/kg in rats. The four different ginseng products were fresh ginseng extract, red ginseng extract, white ginseng extract, and saponin enriched white ginseng extract prepared from the radix of Panax ginseng C.A. Meyer. The ginsenoside concentrations in the ginseng product and the rat plasma samples were determined using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Eight or nine ginsenosides of the 15 tested ginsenosides were detected; however, the content and total ginsenosides varied depending on the preparation method. Moreover, the content of triglycosylated ginsenosides was higher than that of diglycosylated ginsenosides, and deglycosylated ginsenosides were not present in any preparation. After the single oral administrations of four different ginseng products in rats, only four ginsenosides, such as 20(S)-ginsenosides Rb1 (GRb1), GRb2, GRc, and GRd, were detected in the rat plasma samples among the 15 ginsenosides tested. The plasma concentrations of GRb1, GRb2, GRc, and GRd were different depends on the preparation method but pharmacokinetic features of the four ginseng products were similar. In conclusion, a good correlation between the area under the concentration curve and the content of GRb1, GRb2, and GRc, but not GRd, in the ginseng products was identified and it might be the result of their higher content and intestinal biotransformation of the ginseng product.

첨가당류가 인삼차 과립의 물리적 특성에 미치는 영향 (Effect the of Sugar on Physical Properties of Ginseng Ted Granules)

  • 양재원;성현순
    • Journal of Ginseng Research
    • /
    • 제5권2호
    • /
    • pp.132-138
    • /
    • 1981
  • The effect of sugars, mixing ratio between a sugar and ginseng extract, and moisture content on the physical properties of ginseng tea granules such as water sorption and coagulation phase were investigated The physical Properties of granule were significantly affected by the moisture cogent, a kind of sugars and amount of ginseng extract used in the preparation. The granules contained less than 1.0%moisture and 14.0% of ginseng extract were not affected on the properties, however, it was significantly affected when the moisture content was 1.5 ${\pm}$ 0. 2 % and the ginseng extract was more than 18%. In the preparation with simple sugar, it was significantly decreased water sorption and coagulation phase when lactose used instead of anhydrous glucose. It was also observed that the Properties were decreased as the amount of lactose increased in the preparation of granules with mixing sugars.

  • PDF

Arginyl-fructosyl-glucose and Arginyl-fructose, Compounds Related to Browning Reaction in the Model System of Steaming and Heat-drying Processes for the Preparation of Red Ginseng

  • Suzuki, Yukio;Choi, Kang-Ju;Uchida, Kei;Ko, Sung-Ryong;Sohn, Hyun-Joo;Park, Jong-Dae
    • Journal of Ginseng Research
    • /
    • 제28권3호
    • /
    • pp.143-148
    • /
    • 2004
  • Brown color intensity has been a major factor to estimate the quality of red ginseng and its products. This study deals with the relationship between the browning reaction of ginseng root and two compounds, arginyl-fructosyl-glucose(Arg-fru-glc) and arginyl-fructose (Arg-fru), in the model system of steaming and heat-drying processes for the preparation of red ginseng. During the steaming process, a marked decrease of starch and a considerable formation of maltose occurred in main roots of raw ginseng, but the formation of glucose was scarcely observed. After the heat-drying process, the brown color intensity of the powdered preparation of steamed main roots was 3 to 4 times higher than that of the powdered preparation of raw main roots. Also, when the heat- drying process was done with the addition of L-arginine, brown color intensity of the powdered preparation of steamed main roots was 12 to 13 times higher than that of the powdered preparation of raw main roots. The amount ratios of browning reaction products formed from sugar compounds and amino acids in the model system of steaming and heat-drying treatments in vitro were in order of xylose > glucose > fructose > maltose > dextrin (DE 9) > sucrose > dextrin (DE 8) and soluble starch. Each solution of Arg-fru-glc and Arg-fru that were synthesized chemically from maltose plus L-arginine and glucose plus L-arginine, respectively, changed from colorless to brown color during the heat-drying treatment. Amino acids or sugars were effective on the acceleration of each browning reaction of Arg-fru-gIc and Arg-fru during the heat-drying treatment.

Glycemic Index of Insu 100® Herbal Preparation Containing Korean Red Ginseng, Carob, Mulberry, and Banaba

  • Son, Dong-Wook;Lee, Jong-Won;Lee, Pyeong-Jae;Bae, Ki-Hwan
    • Journal of Ginseng Research
    • /
    • 제34권2호
    • /
    • pp.89-92
    • /
    • 2010
  • In this study, we determined the glycemic index (GI) of an herbal preparation (Insu $100^{(R)}$; Korean red ginseng, carob, mulberry, and banaba). Ten subjects (men and women) took part in standard glycemic testing during a 4-week study period (with duplicate trials of each treatment). Informed consent was obtained from each subject. No adverse effects resulted from the administration of the herbal preparation. The GI of Insu $100^{(R)}$ was $19.5{\pm}5.1$, indicating that administration of this herbal cocktail may be beneficial to people with metabolic disorders and to those who wish to maintain their overall health. This study complied with the Declaration of Helsinki.

시호(柴胡)함유 생약제제(生藥製劑)중 인삼(人蔘) Sapogenin의 확인 및 $Ginsenoside-Rb_1$의 분리 정량 (Identification of Ginseng Sapogenin and Quantitative Determination of $Ginsenoside-Rb_1$ from Crude Drug Preparation Containing Bupleuri Radix)

  • 최강주;고성룡;전병선;성현순
    • 생약학회지
    • /
    • 제20권3호
    • /
    • pp.175-179
    • /
    • 1989
  • From crude drug preparation(Soshiho-Tang) ginseng sapogenins were identified by TLC and $ginsenoside-Rb_1$ was determined quantitatively by HPLC. Panaxadiol, pandaxatriol, acid-hydrolysates of ginseng saponin, were identified by TLC with benzene/acetone(4 : 1, v/v). Rf values of which were measured as 0.26 and 0.14, respectively. The content of $ginsenoside-Rb_1$ was determined by HPLC on $Lichrosorb-NH_2$ column with $CH_3CN/H_2O/n-BuOH$(80 : 20 : 10, v/v). Its recovery rate in the extract granules, was as relatively low as $19.8{\pm}1.4%$ compared to the content in raw red ginseng.

  • PDF

인삼 조사포닌의 조제 방법 개선 (Improved Method for the Preparation of Crude Ginseng Saponin)

  • 김시관;곽이성
    • Journal of Ginseng Research
    • /
    • 제22권3호
    • /
    • pp.155-160
    • /
    • 1998
  • This stuffy was carried to establish a new efficient method for the preparation of edible crude ginseng saponin. The conventional butanol extraction and resin adsorption methods were compared for the contents of total crude ginseng saponin and major ginsenosides. Seventy- percent methanol extract was applied to Diaion HP-20 column and the resin was washed with Hn and eluted with absolute methanol. The methanol elute was dried in vivo and analyzed for its ginsenosides. Use of ethanol instead of methanol to make edible crude ginseng saponin gave a similar result. Butanol extraction was performed by the conventional method. The final aqueous layer from butanol extraction was passed through Diaion HP-20 column followed by elution with methanol and Diaion HP-20 passed fraction was extracted with butanol to recover remaining components, respectively, in order to determine saponin loss. TLC and HPLC qualitatively and quantitatively monitored Ginsenosides, respectively. Loss of ginsenosides was higher in butanol extraction method than in Diction HP-20 adsorption method. In addition, saponin fractions prepared by Diction HP-20 adsorption method showed higher content of each ginsenoside, showing 8.2% higher purity than that of butanol extracted fraction. From these results, we propose the resin adsorption method as a new efficient measure for the preparation of crude ginseng saponin, which is edible by using spirit instead of methanol.

  • PDF

Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition

  • Lee, Sang Myung;Bae, Bong-Seok;Park, Hee-Weon;Ahn, Nam-Geun;Cho, Byung-Gu;Cho, Yong-Lae;Kwak, Yi-Seong
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.384-391
    • /
    • 2015
  • It has been reported that Korean Red Ginseng has been manufactured for 1,123 y as described in the GoRyeoDoGyeong record. The Korean Red Ginseng manufactured by the traditional preparation method has its own chemical component characteristics. The ginsenoside content of the red ginseng is shown as Rg1: 3.3 mg/g, Re: 2.0 mg/g, Rb1: 5.8 mg/g, Rc:1.7 mg/g, Rb2: 2.3 mg/g, and Rd: 0.4 mg/g, respectively. It is known that Korean ginseng generally consists of the main root and the lateral or fine roots at a ratio of about 75:25. Therefore, the red ginseng extract is prepared by using this same ratio of the main root and lateral or fine roots and processed by the historical traditional medicine prescription. The red ginseng extract is prepared through a water extraction ($90^{\circ}C$ for 14-16 h) and concentration process (until its final concentration is 70-73 Brix at $50-60^{\circ}C$). The ginsenoside contents of the red ginseng extract are shown as Rg1: 1.3 mg/g, Re: 1.3 mg/g, Rb1: 6.4 mg/g, Rc:2.5 mg/g, Rb2: 2.3 mg/g, and Rd: 0.9 mg/g, respectively. Arginine-fructose-glucose (AFG) is a specific amino-sugar that can be produced by chemical reaction of the process when the fresh ginseng is converted to red ginseng. The content of AFG is 1.0-1.5% in red ginseng. Acidic polysaccharide, which has been known as an immune activator, is at levels of 4.5-7.5% in red ginseng. Therefore, we recommended that the chemical profiles of Korean Red Ginseng made through the defined traditional method should be well preserved and it has had its own chemical characteristics since its traditional development.

백삼 알코올 추출박을 이용한 산성다당체 다량 함유 백삼 농축액 제조 (Preparation of Ginseng Concentrate with High Content of Acidic Polysaccharide from White Tail Ginseng Marc)

  • 강태화;박경준;강성태
    • 한국식품영양과학회지
    • /
    • 제33권4호
    • /
    • pp.736-740
    • /
    • 2004
  • 50% 에탄올 추출박으로부터 기존의 백삼농축액보다 산성다당체가 다량 함유된 백삼 농축액 제조 방법에 대해서 연구하였다. 50% 에탄올을 사용하여 제조한 백삼농축액의 추출 수율과 산성다당체 함량은 에탄올의 농도가 증가할수록 감소하였다. 반면에 백삼을 0∼90% 에탄올로 추출하고 남은 백삼박 내의 산성다당체 함량은 에탄올 농도가 증가할수록 증가하였다. 백삼박으로부터 산성다당체를 얻을 수 있는 최적의 조건은 $\alpha$-amylase를 390∼650 unit/g residue/15 mL 증류수의 농도로 4$0^{\circ}C$에서 5분 동안 처리하는 것으로 확인되었다. 50% 에탄을 추출 후 남은 백삼박에 $\alpha$-amylase를 처리함으로써 백삼박의 물추출액 중의 산성다당체 함량은 무처리구의 8.3%에서 10.5%로 증가하였다. 기존의 50% 에탄올 백삼추출농축액과 본 실험을 통하여 얻어진 백삼박 추출액을 8:2(w/w)로 혼합한 새로운 흔합백삼농축액을 제조한 결과 기존의 인삼농축액에 비해 조사포닌 함량은 비슷하며 약2배 정도의 산성다당체를 함유하고 색도가 짙은 농축액을 제조할 수 있었다.