• Title/Summary/Keyword: ginseng cultivation site

Search Result 15, Processing Time 0.027 seconds

Value of Geumsan Traditional Ginseng Agricultural System as Global Agricultural Heritage (금산전통인삼농업의 세계농업유산적 가치)

  • Hagyeol You;Seula Kim
    • Journal of Ginseng Culture
    • /
    • v.6
    • /
    • pp.105-115
    • /
    • 2024
  • Wild ginseng, grown in undisturbed forest environments, has been maintained for centuriesthrough human intervention and knowledge, leading to the development of current ginseng agriculture. The practice of ginseng farming has long been established in various regions of Korea. However, the ginseng farming specifically in Geumsan was recognized as a Globally Important Agricultural Heritage System (GIAHS) by the Food and Agriculture Organization of the United Nations (FAO) in 2018. This designation was granted after a thorough evaluation, which confirmed that Geumsan's ginseng farming met the necessary criteria, including historical importance, traditional knowledge system, agrobiodiversity, and agricultural landscape. Traditional ginseng farming in Geumsan practices the 'rotating agriculture system', a sustainable land use approach that has been developed over several cycles of long duration (10-15 years). It contains the knowledge to choose locations for cultivation that prioritize the direction of sunlight and wind circulation. Furthermore, it received significant recognition for its agricultural heritage value based on its maintenance of several traditional knowledge systems, including ancestral wisdom and knowledge regarding pre-planting field management techniques. As of December 2023, there are currently 86 locations in 26 nations that have been designated as GIAHS. Among these sites, Geumsan stands out as the first and only site in the world specifically recognized for the cultivation of ginseng crops. This historical record serves as a significant reminder of Korea's prominent position as a major producer of ginseng on a global level. This article first provides an overview of the concept of agricultural heritage, the designation criteria, and the status of the designation. It then identifies, among the GIAHS designation criteria, the agricultural heritage value of traditional ginseng farming in the Geumsan region from the perspective of local traditional knowledge systems.

An investigation of Panax ginseng Meyer growth promotion and the biocontrol potential of antagonistic bacteria against ginseng black spot

  • Sun, Zhuo;Yang, Limin;Zhang, Lianxue;Han, Mei
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.304-311
    • /
    • 2018
  • Background: Ginseng black spot disease resulting from Alternaria panax Whuetz is a common soil-borne disease, with an annual incidence rate higher than 20-30%. In this study, the bacterial strains with good antagonistic effect against A. panax are screened. Methods: A total of 285 bacterial strains isolated from ginseng rhizosphere soils were screened using the Kirby-Bauer disk diffusion method and the Oxford cup plate assay. We analyzed the antifungal spectrum of SZ-22 by confronting incubation. To evaluate the efficacy of biocontrol against ginseng black spot and for growth promotion by SZ-22, we performed pot experiments in a plastic greenhouse. Taxonomic position of SZ-22 was identified using morphology, physiological, and biochemical characteristics, 16S ribosomal DNA, and gyrB sequences. Results: SZ-22 (which was identified as Brevundimonas terrae) showed the strongest inhibition rate against A. panax, which showed 83.70% inhibition, and it also provided broad-spectrum antifungal effects. The inhibition efficacies of the SZ-22 bacterial suspension against ginseng black spot reached 82.47% inhibition, which is significantly higher than that of the 25% suspension concentrate azoxystrobin fungicide treatment (p < 0.05). Moreover, the SZ-22 bacterial suspension also caused ginseng plant growth promotion as well as root enhancement. Conclusion: Although the results of the outdoor pot-culture method were influenced by the pathogen inoculum density, the cropping history of the field site, and the weather conditions, B. terrae SZ-22 controlled ginseng black spot and promoted ginseng growth successfully. This study provides resource for the biocontrol of ginseng black spot.

Depletion of Phosphorus in Mountain Soil and Growth Stimulation of Panax ginseng by Phosphorus Enrichment

  • Choi, Yong-Eui;Yi, Myong-Jong;You, Kyung-Ha;Bae, Kee-Hwa;Han, Jung-Yeon;Yi, Jae-Seon
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.2
    • /
    • pp.170-177
    • /
    • 2009
  • There are remarkable differences in growth and morphological characters of roots between mountain and field cultivated Panax ginseng. Growth of root in mountain cultivated ginseng was much slower than that of field cultivated ginseng. However, the factor affecting the retarded growth in mountain ginseng was not known. Soil analysis revealed that phosphorus (P) content of mountain soil was exceptionally low at least ten-fold lower compared to that of field soil. Thus, we suggest that low availability of P in mountain soil may be one of the limiting factors for growth of ginseng in mountain soil environment. We had monitored the growth of ginseng plants after one and three years of phosphate fertilizer application. Three kinds of phosphate fertilizers: fused magnesium phosphate, fused superphosphate, and single superphosphate were applied to mountain soil. Application of phosphate fertilizers increased the fresh-, dry weight, and diameter of ginseng roots and resulted in increased P accumulation in roots. These results demonstrate that slow growth of ginseng in mountain soil environment might be attributed to the low P content in mountain soil. Thus, analysis of P amount in mountain soil will be a good indicator for the selection of suitable site the ginseng cultivation in forest.

Risk Factors and Safety Measures for Ginseng Cultivation Work - An Examination Study to Develop Contents of Safety Education for Ginseng Farmers (인삼 재배 작업의 재해 위험 요인과 안전 대책 - 인삼 재배 농업인 대상 안전교육 자료 개발을 위한 조사 연구)

  • Kong, Yong-Ku;Lee, Inseok;Lee, Kyung Suk;Choi, Kyeong-Hee;Kang, Da-Yeong;Lee, Juhee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.545-557
    • /
    • 2017
  • Objective: The aim of this study was to find risk factors in cultivating ginseng based on risk assessments and suggest safety measures for main risks. Background: Safety education and training is one of the practical and effective methods to prevent occupational accidents and injuries. In agricultural sector, there are few contents of safety education as compared to other industries. Especially, farm work has different cultivation characteristics according to the crops, so it needs special education materials for each crop. Among the various types of crops, ginseng contains various risk factors due to its long cultivating period and unique environment. Therefore, safety education material specified for ginseng is necessary to improve ginseng farmers' safety. Method: Risk assessment for cultivating tasks of ginseng was carried out through data obtained from various methods (site survey, interview, literature survey). To improve objectivity, the risk assessment was applied with 3-criteria (researcher estimate, interview, previous research results). Finally, the three high-risk tasks were selected and safety measures for those tasks were provided. Results: Three tasks, such as 'Mounting, maintenance and removing supports', 'Pest control' and 'Harvest', were selected as risky tasks among total tasks. (1) In 'Mounting' and maintenance and removing supports', the farmers found to be exposed to the risks of musculoskeletal disorders and accidents related to operating the tablet machine. (2) In 'Pest control', agrichemical poisoning, musculoskeletal disorders and hyperthermia were main risks. Finally, (3) In 'Harvest', the farmers are mainly exposed to the possibility of accidents of agricultural machines and risks of musculoskeletal disorders. Thus, it needs to apply appropriate safety measures to those risky tasks, such as safety guidelines, convenience equipment, protective kit, and so on. Conclusion: This study can be used as basic data for agricultural safety and expected that it would be useful for further study. In addition, the results of the research will be produced in the form of animation, which will enhance the safety consciousness for aged farmers. Application: The result of this study can be used in developing safety education materials for ginseng farmers which is essential to prevent occupational accidents and injuries among ginseng farmers.

Improvement of Certification Criteria based on Analysis of On-site Investigation of Good Agricultural Practices(GAP) for Ginseng (인삼 GAP 인증기준의 현장실천평가결과 분석에 따른 인증기준 개선방안)

  • Yoon, Deok-Hoon;Nam, Ki-Woong;Oh, Soh-Young;Kim, Ga-Bin
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.40-51
    • /
    • 2019
  • Ginseng has a unique production system that is different from those used for other crops. It is subject to the Ginseng Industry Act., requires a long-term cultivation period of 4-6 years, involves complicated cultivation characteristics whereby ginseng is not produced in a single location, and many ginseng farmers engage in mixed-farming. Therefore, to bring the production of Ginseng in line with GAP standards, it is necessary to better understand the on-site practices of Ginseng farmers according to established control points, and to provide a proper action plan for improving efficiency. Among ginseng farmers in Korea who applied for GAP certification, 77.6% obtained it, which is lower than the 94.1% of farmers who obtained certification for other products. 13.7% of the applicants were judged to be unsuitable during document review due to their use of unregistered pesticides and soil heavy metals. Another 8.7% of applicants failed to obtain certification due to inadequate management results. This is a considerably higher rate of failure than the 5.3% incompatibility of document inspection and 0.6% incompatibility of on-site inspection, which suggests that it is relatively more difficult to obtain GAP certification for ginseng farming than for other crops. Ginseng farmers were given an average of 2.65 points out of 10 essential control points and a total 72 control points, which was slightly lower than the 2.81 points obtained for other crops. In particular, ginseng farmers were given an average of 1.96 points in the evaluation of compliance with the safe use standards for pesticides, which was much lower than the average of 2.95 points for other crops. Therefore, it is necessary to train ginseng farmers to comply with the safe use of pesticides. In the other essential control points, the ginseng farmers were rated at an average of 2.33 points, lower than the 2.58 points given for other crops. Several other areas of compliance in which the ginseng farmers also rated low in comparison to other crops were found. These inclued record keeping over 1 year, record of pesticide use, pesticide storages, posts harvest storage management, hand washing before and after work, hygiene related to work clothing, training of workers safety and hygiene, and written plan of hazard management. Also, among the total 72 control points, there are 12 control points (10 required, 2 recommended) that do not apply to ginseng. Therefore, it is considered inappropriate to conduct an effective evaluation of the ginseng production process based on the existing certification standards. In conclusion, differentiated certification standards are needed to expand GAP certification for ginseng farmers, and it is also necessary to develop programs that can be implemented in a more systematic and field-oriented manner to provide the farmers with proper GAP management education.