• Title/Summary/Keyword: gimbal lock

Search Result 10, Processing Time 0.035 seconds

The Study on Camera Control for Improvement of Gimbal Lock in Digital-Twin Environment (디지털 트윈 환경에서의 짐벌락 개선을 위한 카메라 제어방법에 대한 연구)

  • Kim, Kyoung-Tae;Kim, Young-Chan;Cho, In-Pyo;Lee, Sang-Yub
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.476-477
    • /
    • 2022
  • This study deals with rotation, which is one of the expression methods of motion used in the 3D development environment. Euler angle is a rotation method introduced by Leonhard Euler to display objects in three-dimensional space. Although three angles can handle all rotations in a three dimensional coordinate space, there are serious errors in this approach. If you rotate an object with Euler angles, you will face the problem of gimbal locks that cannot rotate under certain circumstances. In contrast to this, the method to rotate an object without a gimbal lock is the quaternion rotation with quaternion. Rather than a detailed mathematical proof of quaternion, it introduces what concept is used in the current 3D development environment, and applies it to camera rotation control to implement a rotating camera without a gimbal lock.

  • PDF

Structural Analysis of Spaceborne Two-axis Gimbal-type Antenna of Compact Advanced Satellite (차세대 중형위성용 2축 짐벌식 안테나의 구조해석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2018
  • A two-axis gimbal-type antenna for a Compact Advanced Satellite (CAS) is used to efficiently transmit high resolution image data to a ground station. In this study, we designed the structure of a two-axis gimbal-type antenna while applying a launch lock device to secure its structural safety under a launch environment. To validate the effectiveness of the structural design, a structural analysis of the antenna was performed. First, a modal analysis was performed to investigate the dynamic responses of the antenna with and without the mechanical constraints of the launch lock device. In addition, a quasi-static analysis was performed to confirm the structural safety of the antenna structure and bolt I/Fs between the antenna base and the satellite. The suitable range of constraint force on the launch lock device was also determined to ensure the structural safety and mechanical gapping of the ball & socket interfaces, which places multi-constraints on the azimuth and elevation stage of the antenna.

Recognition of Basic Motions for Figure Skating using AHRS (AHRS를 이용한 피겨스케이팅 기본 동작 인식)

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.89-96
    • /
    • 2015
  • IT is widely used for biomechanics and AHRS sensor also be highlighted with small sized characteristics and price competitiveness in the field of motion measurement and analysis of sports. In this paper, we attach the AHRS to the figure skate shoes to measure the motion data like spin, forward/backward, jump, in/out edge and toe movement. In order to reduce the measurement error, we have adopted the sensors equipped with Madgwick complementary filtering and also use Euler angle to quaternion conversion to reduce the Gimbal-lock effect. We test and experiment the accuracy and execution time of the pattern recognition algorithms like PCA, ICA, LDA, SVM to show the recognition possibility of it on the basic motions of figure skating from the 9-axis trajectory information which is gathered from AHRS sensor. From the result, PCA, ICA have low accuracy, but LDA, SVM have good accuracy to use for recognition of basic motions of figure skating.

Tutorial on the Coordinate Transforms in Applied Geophysics (물리탐사에 유용한 좌표계 회전 정리)

  • Song, Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • This tutorial summarizes the coordinate transforms for formulating geophysical problems. To ensure mathematical consistency, this discussion begins with the right-hand rule. Further, the concepts of active and passive transforms are introduced. By extending these concepts, the coordinate transform and its inverse between two coordinates are related to the matrix transpose. The yaw-pitch-roll rotation and the azimuth-deviation-tool face rotation transforms are described as the most frequently used schemes, and the relation between the Rodrigues' rotation formula and these two transforms are mathematically explained. The "Gimbal Lock" problem inherent in yaw-pitch-roll rotation is schematically presented and mathematically derived. As a useful tool overcome this problem, the principle and usage of the quaternion is also described.

Recognition of Basic Motions for Snowboarding using AHRS

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.83-89
    • /
    • 2016
  • Internet of Things (IoT) is widely used for biomechanics in sports activities and AHRS(Attitude and Heading Reference System) is a more cost effective solution than conventional high-grade IMUs (Inertial Measurement Units) that only integrate gyroscopes. In this paper, we attach the AHRS to the snowboard to measure the motion data like Air To Fakie, Caballerial and Free Style. In order to reduce the measurement error, we have adopted the sensors equipped with Kalman filtering and also used Euler angle to quaternion conversion to reduce the Gimbal-lock effect. We have tested and evaluated the accuracy and execution time of the pattern recognition algorithms like PCA, ICA, LDA, SVM to show the recognition possibility of it on the basic motions of Snowboarding from the 9-axis trajectory information which is gathered from AHRS sensor. With the result, PCA, ICA have low accuracy, but SVM have good accuracy to use for recognition of basic motions of Snowboarding.

A Study on the Attitude Determination of the KOMPSAT (다목적 실용 위성의 자세결정에 관한 연구)

  • Kim, Byung-Doo;Lee, Ja-Sung;Choi, Wan-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.474-477
    • /
    • 1997
  • In this paper, an efficient attitude determination algorithm based on the Kalman Filter which combines earth/sun sensor data with gyro data in a mutually compensating manner is presented. Quaternion is used as the attitude state to save computation time and to prevent the gimbal-lock situation associated with Euler angles. Gyro data allows the use of the kinematic equation instead of space vehicle's dynamic equation which is usually based on approximation of the actual dynamics and inaccurate torque information. The gyro data are used to propagate the attitude through kinematic equation and the earth/sun sensor data are used to update the attitude and estimate the gyro bias. Simulation results for the KOMPSAT attitude determination system are presented.

  • PDF

Ergonomics-based Design of 7 Degrees of Freedom Motion Capture Device (인간공학기반 7자유도 모션캡쳐 장치 설계)

  • Loh, Byoung Gook;Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The design of a 7 degree of freedom motion capture device(MCD) has been presented. The newly designed MCD overcomes the shortcomings of the existing CADEN-7 exoskeleton robot by implementing various ergonomic design. To improve ease of operation, light-weight high-strength materials such as carbon pipes and engineering plastics were used to reduce weight of the MCD and arm-length adjustment mechanism was also added. The MCD showed consistent measurement results in designed experiments involving change of arm posture from nominal configuration to either elbow-side or arm-front configurations. Furthermore, captured motion in more natural tennis swing appeared to agree well with visual observations made.

Analysis of the Accuracy of Quaternion-Based Spatial Resection Based on the Layout of Control Points (기준점 배치에 따른 쿼터니언기반 공간후방교회법의 정확도 분석)

  • Kim, Eui Myoung;Choi, Han Seung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.255-262
    • /
    • 2018
  • In order to determine the three-dimensional position in photogrammetry, a spatial resection is a pre-requisite step to determine exterior orientation parameters. The existing spatial resection method is a non-linear equation that requires initial values of exterior orientation parameters and has a problem that a gimbal lock phenomenon may occur. On the other hand, the spatial resection using quaternion is a closed form solution that does not require initial values of EOP (Exterior Orientation Parameters) and is a method that can eliminate the problem of gimbal lock. In this study, to analyze the stability of the quaternion-based spatial resection, the exterior orientation parameters were determined according to the different layout of control points and were compared with the determined values using existing non-linear equation. As a result, it can be seen that the quaternionbased spatial resection is affected by the layout of the control points. Therefore, if the initial value of exterior orientation parameters could not be obtained, it would be more effective to estimate the initial exterior orientation values using the quaternion-based spatial resection and apply it to the collinearity equation-based spatial resection method.

A Hybrid Guidance Law for a Strapdown Seeker to Maintain Lock-on Conditions against High Speed Targets

  • Lee, Chae Heun;Hyun, Chul;Lee, Jang Gyu;Choi, Jin Yung;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.190-196
    • /
    • 2013
  • This paper proposes a new guidance law, which considers the Field of View (FOV) of the seeker when a missile has a strapdown seeker mounted instead of a gimbal seeker. When a strapdown seeker, which has a narrow FOV, is used for tracking a target, the FOV of the seeker is an important consideration for guidance performance metrics such as miss distance. We propose a new guidance law called hybrid guidance (HG) to address the shortcomings of conventional guidance laws such as proportional navigation guidance (PNG), which cannot maintain lock-on conditions against high speed targets due to the narrow FOV of the strapdown seeker. The aim of the HG law is to null miss distance and to maintain the look angle within the FOV of the strapdown seeker. In order to achieve this goal, we combine two guidance laws in the HG law. One is a PNG law to null the LOS rate, and the other is a sliding mode guidance (SMG) law derived to keep the look angle within the FOV by employing a Lyapunov-like function with a sliding mode control methodology. We also propose a method to switch these two guidance laws at certain look angles for better guidance performance.

Flight Control Test of Quadrotor-Plane with Hybrid Flight Mode of VTOL and Fast Maneuverability (Hybrid 비행 모드를 갖는 Quadrotor-Plane의 비행제어실험)

  • Kim, Dong-Gyun;Lee, Byoungjin;Lee, Young Jae;Sung, Sangkyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.759-765
    • /
    • 2016
  • This paper presents the principle, dynamics modeling and control, hardware implementation, and flight test result of a hybrid-type unmanned aerial vehicle (UAV). The proposed UAV was designed to provide both hovering and fixed-wing type aerodynamic flight modes. The UAV's flight mode transition was achieved through the attitude transformation in pitch axis, which avoids a complex rotor tilt mechanism from a structural and control viewpoint. To achieve this, a different navigation coordinate was introduced that avoids the gimbal lock in pitch singularity point. Attitude and guidance control algorithms were developed for the flight control system. For flight test purposes, a quadrotor attached with a tailless fixed-wing structure was manufactured. An onboard flight control computer was designed to realize the navigation and control algorithms and the UAV's performance was verified through the outdoor flight tests.