• Title/Summary/Keyword: geum river

Search Result 680, Processing Time 0.026 seconds

Estimation of Future Long-Term Riverbed Fluctuations and Aggregate Extraction Volume Using Climate Change Scenarios: A Case Study of the Nonsan River Basin (기후변화시나리오를 이용한 미래 장기하상변동 및 골재 채취량 산정: 논산천을 사례로)

  • Dae Eop Lee;Min Seok Kim;Hyun Ju Oh
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.107-117
    • /
    • 2024
  • The objective of this study is to estimate riverbed fluctuations and the volume of aggregate extraction attributable to climate change. Rainfall-runoff modeling, utilizing the SWAT model based on climate change scenarios, as well as long-term riverbed fluctuation modeling, employing the HEC-RAS model, were conducted for the Nonsan River basin. The analysis of rainfall-runoff and sediment transport under the SSP5-8.5 scenario for the early part of the future indicates that differences in annual precipitation may exceed 600 mm, resulting in a corresponding variation in the basin's sediment discharge by more than 30,000 tons per year. Additionally, long-term riverbed fluctuation modeling of the lower reaches of the Nonsan Stream has identified a potential aggregate extraction area. It is estimated that aggregate extraction could be feasible within a 2.455 km stretch upstream, approximately 4.6 to 6.9 km from the confluence with the Geum River. These findings suggest that the risk of climate crises, such as extreme rainfall or droughts, could increase due to abnormal weather conditions, and the increase in variability could affect long-term aggregate extraction. Therefore, it is considered important to take into account the impact of climate change in future long-term aggregate extraction planning and policy formulation.

Community Structure of Fish and Inhabiting Status of Endangered Species, Cobitis choii and Gobiobotia naktongensis in the Ji Stream, a Tributary of the Geum River Drainage System of Korea (금강 수계 지천의 어류군집 구조 및 멸종위기종 미호종개 Cobitis choii와 흰수마자 Gobiobotia naktongensis의 서식현황)

  • Ko, Myeong-Hun;Moon, Shin-Joo;Lee, Sang-Jun;Bang, In-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.356-367
    • /
    • 2012
  • Community structure of fish and inhabiting status of endangered species, Cobitis choii and Gobiobotia naktongensis were investigated in the Ji Stream, a tributary of the Geum River Drainage System of Korea from May to October 2011. Ten to 23 fish species inhabited upper stream (St. 1~St. 4) with a Aa-Bb river type composed of mostly pebble and cobble bottoms, 16~28 species did middle stream (St. 5~St. 7) with a Bb type composed of mostly cobble and boulder bottoms, and 20-29 species did lower stream (St. 8~St. 10) with a Bb-Bc type composed of mostly sand bottoms. A total of 44 species belonging to nine families were found in the stream during the survay. The dominant species were in the order of Zacco platypus (37.2%), Pungtungia herzi (5.8%) and Pseudogobio esocinus (5.5%). Other abundant species included Acheilognathus lanceolatus (5.3%), Zacco koreanus (5.2%), Hemibarbus longirostris (4.9%) and Squalidus gracilis majimae (3.5%). Among residing species, 16 species were endemic to Korea, two (Cobits choii and Gobiobotia naktongensis) were endangered, and one (Micropterus salmoides) was non-indigenous. The similarity index based on species composition and abundance clearly delineated the fish community of the Ji Stream according to the three major sections, which were defined at the above. Dominance index gradually decreased toward downstream, while diversity, evenness and species richness indexes gradually increased toward downstream. The two endangered species, C. choii and G. naktongensis co-occurred at the lower stream due to the prevalence of a sandy substratum.

Community Structure of Fish and Inhabiting Status of Natural Monument Cobitis choii in the Baekgok Stream, a Tributary of the Geum River Drainage Systrem of Korea (금강 지류 백곡천의 어류군집 및 천연기념물 미호종개 Cobitis choii의 서식양상)

  • Ko, Myeong-Hun;Hong, Yang-Ki;Kim, Hae-Lim;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.26 no.2
    • /
    • pp.99-111
    • /
    • 2014
  • Community structure of fish and inhabiting status of natural monument and endangered species, Cobitis choii were investigated in the Baekgok Stream, a tributary of the Geum River drainage system of Korea from May to November 2012. Ten-15 fish species inhabited upper stream (St. 1~St. 3) with a Aa or Aa-Bb river type composed of mostly pebble and cobble bottoms. 15~21 species did middle stream (St. 4~St. 5) with Aa or Aa-Bb type composed of mostly cobble, boulder and pebble bottoms. Nine species did Reservoir Baekgok (St. 6) with composed of mostly mud bottoms, and Seven species did Reservoir Baekgok outflow (St. 7) with Aa-Bb type composed of mostly boulder and cobble bottoms. And 20~23 species did lower stream (St. 8~St. 9) with a Bb-Bc type composed of mostly cobble and sand bottoms. A total of 35 species belonging to ten families were found in the stream during the survey. The dominant species were in the order of Zacco platypus (34.7%), Pungtungia herzi (9.4%) and Microphysogobio yaluensis (9.0%). Other abundant species included Tridentiger bifasciatus (8.2%), Pseudogobio esocinus (5.9%), Carassius auratus (4.6%), Squalidus chankaensis tsuchigae (3.7%), Rhinogobius brunneus (3.0%). Among residing species, ten (28.6%) species were endemic to Korea, one (Cobits choii) was endangered, and two (Micropterus salmoides and C. cuvieri) were non-indigenous. Natural monument and endangered species, C. choii were only inhabited St. 5, and they are inhabited 30~100 cm in water depth, sand bottom and slowly velocity. Using the mark-recapture method, populations were estimated at $7,838{\pm}6,290$ individuals. Age group in May estimated from total length indicated that the 38~45 mm group is 0 year old, the 46~60 mm group is 1 years old, the 61~80 mm group is 2 years old, and the 81~93 mm group is more than 3 years old. Condition factor (${\times}10^5) was 0.36~0.39 and 0.35~0.38 for female and male, respectively, and they are 13.5% were infected with parasites (digenea). We are discussed the health status, threats and conservation strategies of C. choii in the Baekgok Stream.

Studios on the Metagonimus fluke in the Daecheong Reservoir and the upper stream of Geum River, Borea (대청호 및 그 상류의 Metagonimus 흡충에 관한 연구)

  • 김종환;김남만
    • Parasites, Hosts and Diseases
    • /
    • v.25 no.1
    • /
    • pp.69-82
    • /
    • 1987
  • The prevalences of the cuke belonging to genus Metagonimus hove been reported along the upper stream of inhabitants by several workers since 1980, however the taxonomical problems of the fluke was not yet settled. The larval flukes; cercaria and metacercaria as well as their intermediate hosts, and adult were studied in order to identify the Mepagonimus in the areas. The results obtained are summarized as follows: 1. The snails, Semisulcospira globus were collected (rom the three different localities along the upper stream of the River. The cercariae were found from 125(7.2%) out of 1,730 snails by natural emerging method, and were identified into 5 species including Metagenimus sp. (3.7%), Pseudexorchis major(1.4%), Cercaria nipponensis (0.9%), Cercaria incerpa(0.6%), and Cercaria yoshidae(0.6%). Cercariae of Metagonimus species had four to dye oral spines on its anterior of the first line. 2. The cercariae of Metagonimus were experimentally exposed to goldfish. nfection rate was 22.9% out of 105 goldfish, and the encysted metacercariae were found in fins(86.7%) and on scales (13.7%) of the fishes, but not in their muscle, head or visceral organs. 3. Seven species of ask were caught in the Daecheong Reservoir and the upper stream. Infestations with metacercaria of Metagonimus were found 100% in Opsariichtys widens and the parasitized numbers of the metacercariae were observed from 250 to 2,400 per fish. In the upper stream, Zacco termmincki, Z. platypus and Pseudogobio esocinus were infected 100% with the metacercaria, on the other hand, the fishes caught in the reservoir showed the lower infestation rates, and a few metacercariae found in the fishes Carassius carassius and Cyprinus carpio in the reservoir and the stream. The majority of metacercariae was detected only on the scales of fishes. 4. In order to know the infectivity and the distribution patterns in the intestine of hosts, rats and dogs were infected with the metacercariae obtained from O. bidens and Z. platypus. In addition the metacercariae obtained from Z. temmincki, P. esocinus and goldfish were given to the rats. The recovery rates of the worms in the small intestine of dogs were higher (63.3~65.8%) than those of the rats (3.5~31.6%). The flukes were found mostly in the middle and the lower part of small intestine of the rats and the dogs, but no worm was collected in the upper part of the intestine of rats. 5. The sixte of adult flukes varied by the hosts. In the adult cukes, oral sucker was smaller than ventral sucker, and the right and left testes were located diagonally, the uterine tubules circled around the upper left testis. The average egg sixte was $29.1{\times}1.7{\mu\textrm{m}}$. According to the above results, the cukes belonging to genus Metagonimus distributed along the Geum River was concluded to be identical with Miyata type of M. yokogawai as that Saito had proposed.

  • PDF

Analysis of Spatial Changes in the Forest Landscape of the Upper Reaches of Guem River Dam Basin according to Land Cover Change (토지피복변화에 따른 금강 상류 댐 유역 산림 경관의 구조적 변화 분석)

  • Kyeong-Tae Kim;Hyun-Jung Lee;Whee-Moon Kim;Won-Kyong Song
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.4
    • /
    • pp.289-301
    • /
    • 2023
  • Forests within watersheds are essential in maintaining ecosystems and are the central infrastructure for constructing an ecological network system. However, due to indiscriminate development projects carried out over past decades, forest fragmentation and land use changes have accelerated, and their original functions have been lost. Since a forest's structural pattern directly impacts ecological processes and functions in understanding forest ecosystems, identifying and analyzing change patterns is essential. Therefore, this study analyzed structural changes in the forest landscape according to the time-series land cover changes using the FRAGSTATS model for the dam watershed of the Geum River upstream. Land cover changes in the dam watershed of the Geum River upstream through land cover change detection showed an increase of 33.12 square kilometers (0.62%) of forests and 67.26 square kilometers (1.26%) of urbanized dry areas and a decrease of 148.25 square kilometers (2.79%) in agricultural areas from the 1980s to the 2010s. The results of no-sampling forest landscape analysis within the watershed indicated landscape percentage (PLAND), area-weighted proximity index (CONTIG_AM), average central area (CORE_MN), and adjacency index (PLADJ) increased, and the number of patches (NP), landscape shape index (LSI), and cohesion index (COHESION) decreased. Identification of structural change patterns through a moving window analysis showed the forest landscape in Sangju City, Gyeongsangbuk Province, Boeun County in Chungcheongbuk Province, and Jinan Province in Jeollabuk Province was relatively well preserved, but fragmentation was ongoing at the border between Okcheon County in Chungcheongbuk Province, Yeongdong and Geumsan Counties in Chungcheongnam Province, and the forest landscape in areas adjacent to Muju and Jangsu Counties in Jeollabuk Province. The results indicate that it is necessary to establish afforestation projects for fragmented areas when preparing a future regional forest management strategy. This study derived areas where fragmentation of forest landscapes is expected and the results may be used as basic data for assessing the health of watershed forests and establishing management plans.

Determination of Trophic Position Using Nitrogen Isotope Ration of Individual Amino Acid in the Geum Estuary (금강 하구 생태계에서 아미노산의 질소 안정동위원소비를 이용한 섭식생물의 영양단계 파악)

  • Choi, Hyuntae;Choi, Bohyung;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.432-440
    • /
    • 2017
  • Compound specific isotope analysis of amino acids (CSIA-AAs) is being highlighted as an alternative approach for overcoming some restrictions in application of stable isotope analysis of bulk tissue (SIA) for trophic position (TP) estimation. However, this approach has rarely been applied in Korea. The present study determines TP of two Polychaeta (Nephtyidae and Glyceridae) and two fish species(Platycephalus indicus and Lophius litulon) collected from the Geum River estuary using nitrogen isotope ratio of amino acid and compared with the TP values estimated by SIA. The Polychaeta species, sampled in two sites, showed similar TP between SIA(2.7 and 3.1) and CSIA-AAs (2.6 and 3.1). However, for both fish species, TP values displayed a large difference between SIA (3.1 and 2.3) and CSIA-AAs (3.8 and 3.7). In this study TP values estimated by CSIA-AAs showed more similar to the previously reported gut content analysis of both fishes compared with the results of SIA. Current study suggests the applicability of nitrogen isotope ratio of amino acid to understand coastal ecosystem structure and trophic ecology.

Changes in Provenance and Transport Process of Fine Sediments in Central South Sea Mud (남해중앙니질대 세립질 퇴적물의 기원지 및 이동과정 변화)

  • Lee, Hong Geum;Park, Won Young;Koo, Hyo Jin;Choi, Jae Yeong;Jang, Jeong Kyu;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.235-247
    • /
    • 2019
  • The Central South Sea Mud (CSSM), developed in the Seomjin River estuary, is known to be supplied with sediments from Heuksan Mud Belt (HMB) and Seomjin River. However, in order to form a mud belt, more sediments must be supplied than supplied in the above areas. Therefore, research on additional sources should be conducted. In this study, clay minerals, major elements analyzes were performed on cores 16PCT-GC01 and 16PCT-GC03 in order to investigate the transition in the provenance and transport pathway of sediments in CSSM. The Huanghe sediments are characterized by higher smectite and the Changjiang sediments are characterized by higher illite. Korean river sediments contain more kaolinite and chlorite than those of chinese rivers. Korean river sediments have higher Al, Fe, K concentraion than Chinese river sediments and Chinese rivers have higher Ca, Mg, Na than those of Korean rivers. Therefore, clay minerals and major elements can be a useful indicator for provenance. Based on our results, CSSM can be divided into three sediment units. Unit 3, which corresponds to the lowstand stage, is interpreted that sediments from Huanghe were supplied to the study area by coastal or tidal currents. Unit 2, which corresponds to the transgressive stage, is interpreted to have a weaker Huanghe effect and a stronger Changjiang and Korean rivers effect. Unit 1, which corresponds to the highstand stage when the sea level is the same as present and current circulation system is formed, is interpreted that sediments from Changjiang and Korean rivers are supplied to the research area through the current.

The Calculation Method of Cell Count for the Bloom-forming (Green tide) Cyanobacterium using Correlation between Colony Area and Cell Number in Korea (군체 크기와 세포수 상관관계를 이용한 녹조 유발 남조류의 세포수 산정 방법)

  • You, Kyung-A;Song, Mi-Ae;Byeon, Myeong-Seop;Lee, Hae-Jin;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.350-357
    • /
    • 2014
  • Harmful Algal Bloom Alert System (HABAS) for drinking water supply is require to fast and accurate count as system monitoring of cyanobacterium occurrence and inducing a response action. We measured correlation between colony size and cell number including genus Anabaena, Aphanizomenon, Microcystis, Oscillatoria which are targeted at HABAS, deducted from standard formula, and suggested calculation method from colony size to the number of cell. We collected cyanobacteria samples at Han River (Paldang reservoir), Nakdong River (Dalseong weir, Changnyeonghaman weir) and Geum River (Gobok reservoir) from August to October, 2013. Also, we studied correlation between colony size and cell number, and calculated regression equation. As a result of correlation of harmful cyanobacteria by genus, Anabaena spp. and Aphanizomenon spp. having trichome showed high correlation coefficients more than 0.93 and Microcystis spp. having colony showed correlation coefficient of 0.76. As a result of correlation of harmful cyanobacteria by species, Anabaena crassa, Aphanizomenon flos-aquae, A. issatschenkoi, Oscillatoria curviceps, O. mougeotii having trichome showed high correlation coefficients from 0.89 to 0.96, and Microcystis aeruginosa, M. wessenbergii, M. viridis having colony showed correlation coefficients from 0.76 to 0.88. Compared with other genus Microcystis relatively showed low correlation because even species and colony size are the same, cell density and cell size are different from Microcystis strains. In this study, using calculated regression might be fast and simple method of cell counting. From now on, we need to secure additional samples, and make a decision to study about other species.

Development of flow measurement method using drones in flood season (II) - application of surface velocity doppler radar (드론을 이용한 홍수기 유량측정방법 개발(II) - 전자파표면유속계 적용)

  • Lee, Tae Hee;Kang, Jong Wan;Lee, Ki Sung;Lee, Sin Jae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.903-913
    • /
    • 2021
  • In the flood season, the measurement of the river discharge has many restrictions due to reasons such as budget, manpower, safety, convenience in measurement and so on. In particular, when heavy rain events occur due to typhoons, etc., it is difficult to measure the amount of flood due to the above problems. In order to improve this problem, in this study, a method was developed that can measure the river discharge in a flood season simply and safely in a short time with minimal manpower by combining the functions of a drone and a surface velocity doppler radar. To overcome the mechanical limitations of drones caused by weather issues such as wind and rainfall derived from the measurement of the river discharge using the conventional drone, we developed a drone with P56 grade dustproof and waterproof performance, stable flight capability at a wind speed of up to 36 km/h, and a payload weight of up to 10 kg. Further, to eliminate vibration which is the most important constraint factor in the measurement with a surface velocity doppler radar, a damper plate was developed as a device that combines a drone and a surface velocity Doppler radar. The velocity meter DSVM (Dron and Surface Veloctity Meter using doppler radar) that combines the flight equipment with the velocity meter was produced. The error of ±3.5% occurred as a result of measuring the river discharge using DSVM at the point of Geumsan-gun (Hwangpunggyo) located at Bonghwang stream (the first tributary stream of the Geum River). In addition, when calculating the mean velocity from the measured surface velocity, the measurement was performed using ADCP simultaneously to improve accuracy, and the mean velocity conversion factor (0.92) was calculated by comparing the mean velocity. In this study, the discharge measured by combining a drone and a surface velocity meter was compared with the discharge measured using ADCP and floats, so that the application and utility of DSVM was confirmed.

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF