• 제목/요약/키워드: gesture-recognition

검색결과 558건 처리시간 0.029초

동작 인식 게임의 융합 발전 방향 (A Study on Convergence Development Direction of Gesture Recognition Game)

  • 이면재
    • 한국융합학회논문지
    • /
    • 제5권4호
    • /
    • pp.1-7
    • /
    • 2014
  • 동작 인식은 동작을 인식하여 처리하는 기술로 사용자에게 편이성과 직관성을 제공한다. 이러한 장점 때문에 동작 인식 기술은 군사, 의료, 교육 등 여러 분야에 융합되어 응용되고 있다. 특히, 게임 분야에서 동작 인식은 실제 동작과 유사하게 플레이할 수 있다는 장점 때문에, 의료, 군사, 교육 등의 분야와 융합되어지고 있다. 본 논문은 이러한 배경을 바탕으로 동작 인식 게임의 융합 발전 방향을 논하기 위한 것이다. 이를 위하여 본 논문에서는 동작 인식 기술 현황과 게임을 살펴보고 동작 인식 게임의 문제점과 개선 방안을 기술한다. 본 논문은 국내 동작 인식게임의 융합 경쟁력을 향상시키는데 도움을 줄 수 있다.

Proposal of Camera Gesture Recognition System Using Motion Recognition Algorithm

  • Moon, Yu-Sung;Kim, Jung-Won
    • 전기전자학회논문지
    • /
    • 제26권1호
    • /
    • pp.133-136
    • /
    • 2022
  • This paper is about motion gesture recognition system, and proposes the following improvement to the flaws of the current system: a motion gesture recognition system and such algorithm that uses the video image of the entire hand and reading its motion gesture to advance the accuracy of recognition. The motion gesture recognition system includes, an image capturing unit that captures and obtains the images of the area applicable for gesture reading, a motion extraction unit that extracts the motion area of the image, and a hand gesture recognition unit that read the motion gestures of the extracted area. The proposed application of the motion gesture algorithm achieves 20% improvement compared to that of the current system.

궤적의 방향 변화 분석에 의한 제스처 인식 알고리듬 (Gesture Recognition Algorithm by Analyzing Direction Change of Trajectory)

  • 박장현;김민수
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.121-127
    • /
    • 2005
  • There is a necessity for the communication between intelligent robots and human beings because of wide spread use of them. Gesture recognition is currently being studied in regards to better conversing. On the basis of previous research, however, the gesture recognition algorithms appear to require not only complicated algorisms but also separate training process for high recognition rates. This study suggests a gesture recognition algorithm based on computer vision system, which is relatively simple and more efficient in recognizing various human gestures. After tracing the hand gesture using a marker, direction changes of the gesture trajectory were analyzed to determine the simple gesture code that has minimal information to recognize. A map is developed to recognize the gestures that can be expressed with different gesture codes. Through the use of numerical and geometrical trajectory, the advantages and disadvantages of the suggested algorithm was determined.

바디 제스처 인식을 위한 기초적 신체 모델 인코딩과 선택적 / 비동시적 입력을 갖는 병렬 상태 기계 (Primitive Body Model Encoding and Selective / Asynchronous Input-Parallel State Machine for Body Gesture Recognition)

  • 김주창;박정우;김우현;이원형;정명진
    • 로봇학회논문지
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 2013
  • Body gesture Recognition has been one of the interested research field for Human-Robot Interaction(HRI). Most of the conventional body gesture recognition algorithms used Hidden Markov Model(HMM) for modeling gestures which have spatio-temporal variabilities. However, HMM-based algorithms have difficulties excluding meaningless gestures. Besides, it is necessary for conventional body gesture recognition algorithms to perform gesture segmentation first, then sends the extracted gesture to the HMM for gesture recognition. This separated system causes time delay between two continuing gestures to be recognized, and it makes the system inappropriate for continuous gesture recognition. To overcome these two limitations, this paper suggests primitive body model encoding, which performs spatio/temporal quantization of motions from human body model and encodes them into predefined primitive codes for each link of a body model, and Selective/Asynchronous Input-Parallel State machine(SAI-PSM) for multiple-simultaneous gesture recognition. The experimental results showed that the proposed gesture recognition system using primitive body model encoding and SAI-PSM can exclude meaningless gestures well from the continuous body model data, while performing multiple-simultaneous gesture recognition without losing recognition rates compared to the previous HMM-based work.

시 공간 정규화를 통한 딥 러닝 기반의 3D 제스처 인식 (Deep Learning Based 3D Gesture Recognition Using Spatio-Temporal Normalization)

  • 채지훈;강수명;김해성;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제21권5호
    • /
    • pp.626-637
    • /
    • 2018
  • Human exchanges information not only through words, but also through body gesture or hand gesture. And they can be used to build effective interfaces in mobile, virtual reality, and augmented reality. The past 2D gesture recognition research had information loss caused by projecting 3D information in 2D. Since the recognition of the gesture in 3D is higher than 2D space in terms of recognition range, the complexity of gesture recognition increases. In this paper, we proposed a real-time gesture recognition deep learning model and application in 3D space using deep learning technique. First, in order to recognize the gesture in the 3D space, the data collection is performed using the unity game engine to construct and acquire data. Second, input vector normalization for learning 3D gesture recognition model is processed based on deep learning. Thirdly, the SELU(Scaled Exponential Linear Unit) function is applied to the neural network's active function for faster learning and better recognition performance. The proposed system is expected to be applicable to various fields such as rehabilitation cares, game applications, and virtual reality.

A Hand Gesture Recognition Method using Inertial Sensor for Rapid Operation on Embedded Device

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.757-770
    • /
    • 2020
  • We propose a hand gesture recognition method that is compatible with a head-up display (HUD) including small processing resource. For fast link adaptation with HUD, it is necessary to rapidly process gesture recognition and send the minimum amount of driver hand gesture data from the wearable device. Therefore, we use a method that recognizes each hand gesture with an inertial measurement unit (IMU) sensor based on revised correlation matching. The method of gesture recognition is executed by calculating the correlation between every axis of the acquired data set. By classifying pre-defined gesture values and actions, the proposed method enables rapid recognition. Furthermore, we evaluate the performance of the algorithm, which can be implanted within wearable bands, requiring a minimal process load. The experimental results evaluated the feasibility and effectiveness of our decomposed correlation matching method. Furthermore, we tested the proposed algorithm to confirm the effectiveness of the system using pre-defined gestures of specific motions with a wearable platform device. The experimental results validated the feasibility and effectiveness of the proposed hand gesture recognition system. Despite being based on a very simple concept, the proposed algorithm showed good performance in recognition accuracy.

Hand Gesture Recognition Suitable for Wearable Devices using Flexible Epidermal Tactile Sensor Array

  • Byun, Sung-Woo;Lee, Seok-Pil
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1732-1739
    • /
    • 2018
  • With the explosion of digital devices, interaction technologies between human and devices are required more than ever. Especially, hand gesture recognition is advantageous in that it can be easily used. It is divided into the two groups: the contact sensor and the non-contact sensor. Compared with non-contact gesture recognition, the advantage of contact gesture recognition is that it is able to classify gestures that disappear from the sensor's sight. Also, since there is direct contacted with the user, relatively accurate information can be acquired. Electromyography (EMG) and force-sensitive resistors (FSRs) are the typical methods used for contact gesture recognition based on muscle activities. The sensors, however, are generally too sensitive to environmental disturbances such as electrical noises, electromagnetic signals and so on. In this paper, we propose a novel contact gesture recognition method based on Flexible Epidermal Tactile Sensor Array (FETSA) that is used to measure electrical signals according to movements of the wrist. To recognize gestures using FETSA, we extracted feature sets, and the gestures were subsequently classified using the support vector machine. The performance of the proposed gesture recognition method is very promising in comparison with two previous non-contact and contact gesture recognition studies.

CNN-based Gesture Recognition using Motion History Image

  • Koh, Youjin;Kim, Taewon;Hong, Min;Choi, Yoo-Joo
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.67-73
    • /
    • 2020
  • In this paper, we present a CNN-based gesture recognition approach which reduces the memory burden of input data. Most of the neural network-based gesture recognition methods have used a sequence of frame images as input data, which cause a memory burden problem. We use a motion history image in order to define a meaningful gesture. The motion history image is a grayscale image into which the temporal motion information is collapsed by synthesizing silhouette images of a user during the period of one meaningful gesture. In this paper, we first summarize the previous traditional approaches and neural network-based approaches for gesture recognition. Then we explain the data preprocessing procedure for making the motion history image and the neural network architecture with three convolution layers for recognizing the meaningful gestures. In the experiments, we trained five types of gestures, namely those for charging power, shooting left, shooting right, kicking left, and kicking right. The accuracy of gesture recognition was measured by adjusting the number of filters in each layer in the proposed network. We use a grayscale image with 240 × 320 resolution which defines one meaningful gesture and achieved a gesture recognition accuracy of 98.24%.

2단계 히든마코프 모델을 이용한 제스쳐의 성능향상 연구 (Improvement of Gesture Recognition using 2-stage HMM)

  • 정훤재;박현준;김동한
    • 제어로봇시스템학회논문지
    • /
    • 제21권11호
    • /
    • pp.1034-1037
    • /
    • 2015
  • In recent years in the field of robotics, various methods have been developed to create an intimate relationship between people and robots. These methods include speech, vision, and biometrics recognition as well as gesture-based interaction. These recognition technologies are used in various wearable devices, smartphones and other electric devices for convenience. Among these technologies, gesture recognition is the most commonly used and appropriate technology for wearable devices. Gesture recognition can be classified as contact or noncontact gesture recognition. This paper proposes contact gesture recognition with IMU and EMG sensors by using the hidden Markov model (HMM) twice. Several simple behaviors make main gestures through the one-stage HMM. It is equal to the Hidden Markov model process, which is well known for pattern recognition. Additionally, the sequence of the main gestures, which comes from the one-stage HMM, creates some higher-order gestures through the two-stage HMM. In this way, more natural and intelligent gestures can be implemented through simple gestures. This advanced process can play a larger role in gesture recognition-based UX for many wearable and smart devices.

Residual Learning Based CNN for Gesture Recognition in Robot Interaction

  • Han, Hua
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.385-398
    • /
    • 2021
  • The complexity of deep learning models affects the real-time performance of gesture recognition, thereby limiting the application of gesture recognition algorithms in actual scenarios. Hence, a residual learning neural network based on a deep convolutional neural network is proposed. First, small convolution kernels are used to extract the local details of gesture images. Subsequently, a shallow residual structure is built to share weights, thereby avoiding gradient disappearance or gradient explosion as the network layer deepens; consequently, the difficulty of model optimisation is simplified. Additional convolutional neural networks are used to accelerate the refinement of deep abstract features based on the spatial importance of the gesture feature distribution. Finally, a fully connected cascade softmax classifier is used to complete the gesture recognition. Compared with the dense connection multiplexing feature information network, the proposed algorithm is optimised in feature multiplexing to avoid performance fluctuations caused by feature redundancy. Experimental results from the ISOGD gesture dataset and Gesture dataset prove that the proposed algorithm affords a fast convergence speed and high accuracy.