• Title/Summary/Keyword: gesture trajectory

Search Result 25, Processing Time 0.029 seconds

Gesture Recognition Algorithm by Analyzing Direction Change of Trajectory (궤적의 방향 변화 분석에 의한 제스처 인식 알고리듬)

  • Park Jahng-Hyon;Kim Minsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.121-127
    • /
    • 2005
  • There is a necessity for the communication between intelligent robots and human beings because of wide spread use of them. Gesture recognition is currently being studied in regards to better conversing. On the basis of previous research, however, the gesture recognition algorithms appear to require not only complicated algorisms but also separate training process for high recognition rates. This study suggests a gesture recognition algorithm based on computer vision system, which is relatively simple and more efficient in recognizing various human gestures. After tracing the hand gesture using a marker, direction changes of the gesture trajectory were analyzed to determine the simple gesture code that has minimal information to recognize. A map is developed to recognize the gestures that can be expressed with different gesture codes. Through the use of numerical and geometrical trajectory, the advantages and disadvantages of the suggested algorithm was determined.

Dynamic Human Activity Recognition Based on Improved FNN Model

  • Xu, Wenkai;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.417-424
    • /
    • 2012
  • In this paper, we propose an automatic system that recognizes dynamic human gestures activity, including Arabic numbers from 0 to 9. We assume the gesture trajectory is almost in a plane that called principal gesture plane, then the Least Squares Method is used to estimate the plane and project the 3-D trajectory model onto the principal. An improved FNN model combined with HMM is proposed for dynamic gesture recognition, which combines ability of HMM model for temporal data modeling with that of fuzzy neural network. The proposed algorithm shows that satisfactory performance and high recognition rate.

A Measurement System for 3D Hand-Drawn Gesture with a PHANToMTM Device

  • Ko, Seong-Young;Bang, Won-Chul;Kim, Sang-Youn
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.347-358
    • /
    • 2010
  • This paper presents a measurement system for 3D hand-drawn gesture motion. Many pen-type input devices with Inertial Measurement Units (IMU) have been developed to estimate 3D hand-drawn gesture using the measured acceleration and/or the angular velocity of the device. The crucial procedure in developing these devices is to measure and to analyze their motion or trajectory. In order to verify the trajectory estimated by an IMU-based input device, it is necessary to compare the estimated trajectory to the real trajectory. For measuring the real trajectory of the pen-type device, a PHANToMTM haptic device is utilized because it allows us to measure the 3D motion of the object in real-time. Even though the PHANToMTM measures the position of the hand gesture well, poor initialization may produce a large amount of error. Therefore, this paper proposes a calibration method which can minimize measurement errors.

A Dynamic Hand Gesture Recognition System Incorporating Orientation-based Linear Extrapolation Predictor and Velocity-assisted Longest Common Subsequence Algorithm

  • Yuan, Min;Yao, Heng;Qin, Chuan;Tian, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4491-4509
    • /
    • 2017
  • The present paper proposes a novel dynamic system for hand gesture recognition. The approach involved is comprised of three main steps: detection, tracking and recognition. First, the gesture contour captured by a 2D-camera is detected by combining the three-frame difference method and skin-color elliptic boundary model. Then, the trajectory of the hand gesture is extracted via a gesture-tracking algorithm based on an occlusion-direction oriented linear extrapolation predictor, where the gesture coordinate in next frame is predicted by the judgment of current occlusion direction. Finally, to overcome the interference of insignificant trajectory segments, the longest common subsequence (LCS) is employed with the aid of velocity information. Besides, to tackle the subgesture problem, i.e., some gestures may also be a part of others, the most probable gesture category is identified through comparison of the relative LCS length of each gesture, i.e., the proportion between the LCS length and the total length of each template, rather than the length of LCS for each gesture. The gesture dataset for system performance test contains digits ranged from 0 to 9, and experimental results demonstrate the robustness and effectiveness of the proposed approach.

AdaBoost-Based Gesture Recognition Using Time Interval Trajectory Features (시간 간격 특징 벡터를 이용한 AdaBoost 기반 제스처 인식)

  • Hwang, Seung-Jun;Ahn, Gwang-Pyo;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.247-254
    • /
    • 2013
  • The task of 3D gesture recognition for controlling equipments is highly challenging due to the propagation of 3D smart TV recently. In this paper, the AdaBoost algorithm is applied to 3D gesture recognition by using Kinect sensor. By tracking time interval trajectory of hand, wrist and arm by Kinect, AdaBoost algorithm is used to train and classify 3D gesture. Experimental results demonstrate that the proposed method can successfully extract trained gestures from continuous hand, wrist and arm motion in real time.

Hand Gesture Sequence Recognition using Morphological Chain Code Edge Vector (형태론적 체인코드 에지벡터를 이용한 핸드 제스처 시퀀스 인식)

  • Lee Kang-Ho;Choi Jong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.85-91
    • /
    • 2004
  • The use of gestures provides an attractive alternate to cumbersome interface devices for human-computer interaction. This has motivated a very active research area concerned with computer vision-based analysis and interpretation of hand gestures The most important issues in gesture recognition are the simplification of algorithm and the reduction of processing time. The mathematical morphology based on geometrical set theory is best used to perform the processing. The key idea of proposed algorithm is to track a trajectory of center points in primitive elements extracted by morphological shape decomposition. The trajectory of morphological center points includes the information on shape orientation. Based on this characteristic we proposed the morphological gesture sequence recognition algorithm using feature vectors calculated to the trajectory of morphological center points. Through the experiment, we demonstrated the efficiency of proposed algorithm.

  • PDF

Stroke Based Hand Gesture Recognition by Analyzing a Trajectory of Polhemus Sensor (Polhemus 센서의 궤적 정보 해석을 이용한 스트로크 기반의 손 제스처 인식)

  • Kim, In-Cheol;Lee, Nam-Ho;Lee, Yong-Bum;Chien, Sung-Il
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.8
    • /
    • pp.46-53
    • /
    • 1999
  • We have developed glove based hand gesture recognition system for recognizing 3D gesture of operators in remote work environment. Polhemus sensor attached to the PinchGlove is employed to obtain the sequence of 3D positions of a hand trajectory. These 3D data are then encoded as the input to our recognition system. We propose the use of the strokes to be modeled by HMMs as basic units. The gesture models are constructed by concatenating stroke HMMs and thereby the HMMs for the newly defined gestures can be created without retraining their parameters. Thus, by using stroke models rather than gesture models, we can raise the system extensibility. The experiment results for 16 different gestures show that our stroke based composite HMM performs better than the conventional gesture based HMM.

  • PDF

HOG-HOD Algorithm for Recognition of Multi-cultural Hand Gestures (다문화 손동작 인식을 위한 HOG-HOD 알고리즘)

  • Kim, Jiye;Park, Jong-Il
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1187-1199
    • /
    • 2017
  • In recent years, research about Natural User Interface (NUI) has become focused because NUI system can give natural feelings for users in virtual reality. Most important thing in NUI system is how to communicate with the computer system. There are many things to interact with users such as speech, hand gestures, body actions. Among them, hand gesture is suitable for the purpose of NUI because people often use a relatively high frequency in daily life and hand gesture have meaning only by itself. This hand gestures called multi-cultural hand gesture and we proposed the method to recognize this kind of hand gestures. Proposed method is composed of Histogram of Oriented Gradients (HOG) used for hand shape recognition and Histogram of Oriented Displacements (HOD) used for hand center point trajectory recognition.

Gesture Recognition by Analyzing a Trajetory on Spatio-Temporal Space (시공간상의 궤적 분석에 의한 제스쳐 인식)

  • 민병우;윤호섭;소정;에지마 도시야끼
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.1
    • /
    • pp.157-157
    • /
    • 1999
  • Researches on the gesture recognition have become a very interesting topic in the computer vision area, Gesture recognition from visual images has a number of potential applicationssuch as HCI (Human Computer Interaction), VR(Virtual Reality), machine vision. To overcome thetechnical barriers in visual processing, conventional approaches have employed cumbersome devicessuch as datagloves or color marked gloves. In this research, we capture gesture images without usingexternal devices and generate a gesture trajectery composed of point-tokens. The trajectory Is spottedusing phase-based velocity constraints and recognized using the discrete left-right HMM. Inputvectors to the HMM are obtained by using the LBG clustering algorithm on a polar-coordinate spacewhere point-tokens on the Cartesian space .are converted. A gesture vocabulary is composed oftwenty-two dynamic hand gestures for editing drawing elements. In our experiment, one hundred dataper gesture are collected from twenty persons, Fifty data are used for training and another fifty datafor recognition experiment. The recognition result shows about 95% recognition rate and also thepossibility that these results can be applied to several potential systems operated by gestures. Thedeveloped system is running in real time for editing basic graphic primitives in the hardwareenvironments of a Pentium-pro (200 MHz), a Matrox Meteor graphic board and a CCD camera, anda Window95 and Visual C++ software environment.

Recognition of 3D hand gestures using partially tuned composite hidden Markov models

  • Kim, In Cheol
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.236-240
    • /
    • 2004
  • Stroke-based composite HMMs with articulation states are proposed to deal with 3D spatio-temporal trajectory gestures. The direct use of 3D data provides more naturalness in generating gestures, thereby avoiding some of the constraints usually imposed to prevent performance degradation when trajectory data are projected into a specific 2D plane. Also, the decomposition of gestures into more primitive strokes is quite attractive, since reversely concatenating stroke-based HMMs makes it possible to construct a new set of gesture HMMs without retraining their parameters. Any deterioration in performance arising from decomposition can be remedied by a partial tuning process for such composite HMMs.