• 제목/요약/키워드: germ cells

Search Result 490, Processing Time 0.023 seconds

Apoptosis of Germ Cells after Vasectomy in Rats (수컷 랫드에서 졍관절제술에 의한 생식세포의 Apoptosis)

  • Choi, Jong-yun;Cho, Sung-whan;Ryu, Si-yoon;Jee, Young-heun;Lee, Geun-jwa;Son, Hwa-young
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.3
    • /
    • pp.485-492
    • /
    • 2003
  • The pathological mechanism of impaired spermatogenesis after vasectomy has not been completely investigated. In this study, we examined pathological changes of the testis and the Fas-Fas ligand (FasL) mediated signaling pathway in apoptotic germ cell death after vasectomy in rats. Ten-weeks old Sprague-Dawley rats were underwent bilateral vasectomy and sacrificed after 1 day, 2 days, 3 days, 5 days, 1 week, 2 weeks, and 4 weeks of surgery and the testes were removed. Histopathological evaluation of spermatogenesis was performed by hematoxylin-eosin and periodic acid-Schiff-hematoxylin staining. To elucidate the pathophysiology of seminiferous tubule damage, terminal dUTP nick end labeling staining, electrophoresis assay of DNA fragmentation, and Western blotting analysis for Fas-FasL were performed. Relative weights of testes were decreased from 5 days after vasectomy. Germ cell degeneration were first found in the spermatogonia and spermatocytes at stages I-VI, and XII-XIV seminiferous tubules. Mean incidence of apoptotic germ cells after vasectomy progressively increased to peak in 5 days, and then gradually decreased to the control levels in 2 weeks after vasectomy. The expression of Fas-FasL reached maximum level at 5 days after vasectomy and then declined. In conclusion, impaired spermatogenesis after vasectomy associated with an increase in germ cell apoptasis, which is partly mediated by the activation of Fas-FasL.

Regulation and 3 dimensional culture of tertiary follicle growth

  • Cheon, Yong-Pil
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.3
    • /
    • pp.95-106
    • /
    • 2012
  • It has been revealed that multiple cohorts of tertiary follicles develop during some animal estrous cycle and the human menstrual cycle. To reach developmental competence, oocytes need the support of somatic cells. During embryogenesis, the primordial germ cells appear, travel to the gonadal rudiments, and form follicles. The female germ cells develop within the somatic cells of the ovary, granulosa cells, and theca cells. How the oocyte and follicle cells support each other has been seriously studied. The latest technologies in genes and proteins and genetic engineering have allowed us to collect a great deal of information about folliculogenesis. For example, a few web pages (http://www.ncbi.nlm. nih.gov; http://mrg.genetics.washington.edu) provide access to databases of genomes, sequences of transcriptomes, and various tools for analyzing and discovering genes important in ovarian development. Formation of the antrum (tertiary follicle) is the final phase of folliculogenesis and the transition from intraovarian to extraovian regulation. This final step coordinates with the hypothalamic-pituitary-ovarian axis. On the other hand, currently, follicle physiology is under intense investigation, as little is known about how to overcome women's ovarian problems or how to develop competent oocytes from in vitro follicle culture or transplantation. In this review, some of the known roles of hormones and some of the genes involved in tertiary follicle growth and the general characteristics of tertiary follicles are summarized. In addition, in vitro culture of tertiary follicles is also discussed as a study model and an assisted reproductive technology model.

Retroviral Gene Expression in Spermatogonial Stem Cells during Long-term Culture

  • Jeong, Dong Kee;Griswold, Michael D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1015-1022
    • /
    • 2007
  • The spermatogonial stem cell (SSCs) is unique in that it is the only cell in the adult male that can contribute genes to a subsequent generation. Permanent modification of the germ cell line may be realized if stem cells could be cultured, transfected with unique genes, and then transplanted into recipient testes. We developed a culture system that supported long-term viability of SSCs. We used a retrovirus vector (pMSCV including ${\beta}$-galactosidase) to stably transfect spermatogonia following long-term culture using the system developed. Expression of the reporter gene ${\beta}$-galactosidase controlled by the retroviral vector was stable in long-term cultured SSCs. We confirmed the retroviral-mediated ${\beta}$-galactsidase gene could be expressed in germ cells in recipient mice following SSCs transplantation.

Ultrastructure of Germ Cells during Spermatogenesis and Structural Changes in the Seminal Vesicle in Male Neptunea (Barbitonia) arthritica cumingii (Crosse, 1862)

  • Chung Ee Yung;Kim Sung Yeon;Ryou Dong Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • The ultrastructure of germ cells during spermatogenesis and the structural changes in the epithelial cells of the seminal vesicle with testicular development in male Neptunea (Barbitonia) arthritica cumingii were investigated monthly based on electron microscopic and histologic observations. N. arthritica cumingii (Gastropod: Buccinidae) undergoes internal fertilization and possesses a modified type of spermatozoon, which is approximately 20$\mu$m long. The axoneme of the tail flagellum consists of nine peripheral pairs of microtubules and one central pair. Many spermatozoa occur in the acini of the testis in the ripe stage and are transported to the seminal vesicles in the accumulating phase. In males, the monthly gonadosomatic index began to increase in September and reached a maximum in February. Subsequently, it decreased rapidly after April. The testis of this species can be classified into four developmental stages: the active (August to September), ripe (October to July), copulation (April to July), and recovery (July to August) stages. Structural changes in the epithelial cells of the seminal vesicles of this species could be classified into three phases: (1) S-I (resting), (2) S-II (accumulating), and (3) S-III (spent) phases. The morphology and structure of the epithelial cells of the seminal vesicle differed in each phase; the cells were cuboidal, squamous, or columnar in the resting, accumulating, or spent phases, respectively.

A Cytogenetic Study on Induction of Diploid Spermatozoa in Poultry (가금류 정자 세포의 배수성 유기를 위한 세포 유전학적 연구)

  • 김철욱;손시환;전익수
    • Korean Journal of Poultry Science
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • In order to produce polyploid quail, the patterns of spermatogenesis and induction of diploid spermatozoa were analyzed by administration of spindle fiber inhibitor agent. Colcemid at the dose level of 37 $\mu\textrm{g}$ /100 g BW was Injected intraperitoneally to 50 Japanese quail males for 3 consecutive days. Five to 20 days after the first colcemid injection, the metaphase spreads from mitotic spermatogonia, primary spermatocyte and secondary spermatocyte were observed. By cytogenetic analysis, 9.4% of spermatogonia and spermatocyte cells in germ cells from the treated males was found to be polyploid cells. As compared with colcemld treated, the males with non-treated colcemid had only 2.3% polyploid cells in germ cells. The induction of diploid germ cells was highest in 10 days after the first colcemid injection and was lowest in 5 days after the first colcemid injection. These results suggested that between 10 to 15 days before maturation of the spermatozoa, the male germ cells were most sensitive to colcemid treatment. Spindle fiber inhibitor agent was also more sensitive to mitotic division of spermatogonia than meiotic division of primary and secondary spermatocyte.

  • PDF

Ultrastructure and Role of Somatic Cells in Macrobrachium nipponense Testis (징거미새우, Macrobrachium nipponense 정소 구성세포의 미세구조와 기능)

  • KIM Dae-Hyun;KANG Jung-Ha;HAN Chang-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.403-407
    • /
    • 2000
  • Ultrastructure and function of testis somatic cells in freshwater prawns Macrobrachium nipponense were studied. The paired testes of the prawn were elongated, united at their anterior end, which lay between the dorsal surface of the hepatopancreas and the heart. Each testis consisted of a large number of seminiferous cords compactly held together by connective tissue. A seminiferous cord was composed of an outer layer of simple squamous epithelium, a basement membrane, the closely packed germ cells and sustentacular cells of the germinal ridge, and an inner layer of simple cuboidal epithelial cells. Leydig cell-like cells in an angular areas filling the space of the seminiferous cords were observed. The nuclei of leydig cell-like cells were characterized by a distinct nucleolus. The simple squamous epithelial layer was composed of flattened cells tying on a basement membrane. The nuclei of the flattened cells were often overlapped in a layer, and the cytoplasm of the cells was observed just near the nuclei. The sustentacular cells were complex in morphology. These cells had relatively small cell bodies from which long cytoplasmic extensions ramified reached the space of germ cells in the germinal ridge. The nuclei of sustentacular cells usually exhibited angular profiles and located most commonly at the periphery of the cords. Cells of simple cuboidal epithelium located between germinal ridge and lumen of seminiferous cord, and part of the cells were adjacent to basal lamina, The cuboidal epithelial cells contained numerous mitochondria, the well-developed rER, the well-developed Golgi complex, and irregularly shaped nuclei. Transition vesicles appeared on the cis side of the Golgi complex. The large vesicles on the trans side of the complex appeared to fuse to form a membrane-bound structure. A number of pits on the cell apex suggested exocytotic activity for secretion of the sperm supporting matrix.

  • PDF