• Title/Summary/Keyword: geothermal

Search Result 1,195, Processing Time 0.024 seconds

A Case Study for the Economic Feasibility Model and Analysis of a GDHS Given Geothermal Temperature (기대지열온도하에서 GDHS의 경제성분석 사례연구)

  • Yang, Moon-Hee;Kim, Tai-Yoo;Lee, Sang-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.115-127
    • /
    • 1997
  • A GDHS(Geothermal District Heating System) is a heating system supplying a group of districts with heat extracted from geothermal sources. The advantages of GDHS include saving fuel consumption as well as reducing air pollution. This paper presents a case study for the economic feasibility model and analysis of a GDHS with which central/individual heating systems are replaced. Configuring to a simplified GDHS which consisits of subsurface systems, surface systems, and transmission/distribution systems, we find out the properties of the system and the model parameters affecting the initial investment/operating costs in order to develop a classical economic feasibility model given geothermal temperature. Based on our model parameter space, we analyzed the geothermal development project of the Jejoo Island probabilistically given prior information such as the expected geothermal power, the demand size and the length of transmission/distribution pipes.

  • PDF

Cooling Performance of Geothermal Heat Pump using Alluvium Aquifer (충적대수층을 이용한 지열히트펌프시스템의 냉방성능)

  • Kang, Byung-Chan;Park, Jun-Un;Lee, Chol-Woo;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.561-566
    • /
    • 2009
  • Alluvium is sedimentary stratum and composed of gravel, sand, silt, clay. Permeability of alluvium is the higher. If alluvium have lots of aquifer, will be of great use heat source and heat sink of heat pump. Alluvium aquifer contain the thermal energy of surrounding ground. Also geothermal heat pump using alluvium aquifer reduce expenses than general geothermal heat pump, because geothermal heat pump using alluvium aquifer make use of single well. In this study geothermal heat pump using alluvium aquifer was installed and tested for a building. The heat pump capacity is 30USRT. Temperature of ground water is in $12{\sim}17^{\circ}C$ annually and the quality of the water is as good as living water. The heat pump cooling COP is 4.4 ~ 4.7. The system cooling COP is 3.25 ~ 3.6. This performance is as good as BHE type ground source heat pump.

  • PDF

The Thermal conductivity analysis and performance evaluation on the pavement applying geothermal snow melting system (지열 융설시스템을 적용한 포장체의 열전도분석 및 구조안전성 검토)

  • Lee, Seung-Ha;Park, Jeong-Sik;Lee, Seok-Jin;Kim, Bong-Chan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • A sliding accident on the road have a high percentage by road freezing, especially, it is often appeared at bridges and tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing a partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out about pavement materials of concrete and asphalt when it is buried. For the feasibility study on geothermal snow melting system, analysis of the ground melting point when operating system, life evaluation of pavements and safety evaluation of pipes are performed.

A Study of Geothermal Power Production with Flashed Steam System (플래쉬 시스템에 의한 지열 발전 성능해석)

  • Lee, Se-Kyoun;Woo, Joung-Son
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.1-7
    • /
    • 2008
  • Flashed steam system is one of the important geothermal power production methods. In this paper, optimum operations and performances of single and double flash systems are presented. It is shown that double flash system can produce about 26.5% more power than single flash system. Temperature of geothermal water($T_R$) is the most important parameter in the geothermal system. Optimum single and double flash temperatures and net power produced with these optimum conditions are expressed as a function of $T_R$ in this study. Thus net power output from geothermal resources can be estimated with the results of this work. Condenser Temperature($T_{con}$) is also important and the net power production can be shown as a function of ($T_R-T_{con}$. Volume flow rate per unit power is also to be considered as the condenser temperature decreases.

Performance Analysis of Ground Heat Exchanger in Combined Well and Open-Closed Loops Geothermal (CWG) System (밀폐형과 개방형이 결합된 복합지열시스템의 지중열교환기 성능 분석)

  • Park, Youngyun;Song, Jae-Yong;Lee, Geun-Chun;Kim, Ki-Joon;Mok, Jong-Koo;Park, Yu-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.23-29
    • /
    • 2017
  • This study was conducted to evaluate performance of geothermal heat exchanger (GHE) in the combined well and open-closed loops geothermal (CWG) systems. The CWG systems were designed to combine open loop geothermal heat pumps and closed loop geothermal heat pumps for high energy efficiency. GHE of the CWG systems could be installed at pumping wells for agricultural usage. To get optimal heat exchange capacity of GHE of the CWG systems, 4 GHEs with various materials and apertures were tested at laboratory scale. Polyethylene (PE) and stainless steel (STS) were selected as GHE materials. The maximum heat exchange capacity of GHEs were estimated to be in the range of 33.0~104 kcal/min. The heat exchange capacity of STS GHEs was 2.4~3.2 times higher than that of PE GHE. The optimal cross section area of GHE and flow rate of circulating water of GHE were estimated to be $2,500mm^2$ and 113 L/min, respectively. For more complicated GHE of the CWG systems, it is necessary to evaluate GHEs at various scales.

An Experimental Comparison of the Fluidity of G-class cement with Portland cement (지열발전을 위한 지열정 시멘트용 G-class시멘트와 일반 포틀랜드시멘트와의 유동성 비교실험)

  • Jeon, Jong-Ug;Won, Jong-Muk;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • The G-class cement is usually used for geothermal well grouting to protect a steel casing which is equipped in a geothermal well to transfer geothermal water from deep subsurface to ground surface. In geothermal grouting process, obtaining appropriate fluidity is extremely important in order to fill cement grout flawlessly. In this paper, a series of the V-funnel and Slump Flow test was performed on both of the Portland cement and the G-class cement in order to compare fluidity and filling ability of those kind of cements. In the result of V-funnel test, the fluidity of G-class cement was evaluated much better than the Portland cement at the water/cement ratio of 0.8. In the case of Slump Flow test, the fluidity of G- class cement was estimated slightly better than the Portland cement at both the water/cement ratio of 0.55 and 0.8. Even though the initial fluidity and filling ability of G-class cement were relatively higher than the Portland cement, the results could be considerably changed with time. The results show that the fluidity and filling ability for geothermal well cementation can be properly controlled with water content and additives for adverse geothermal well environment.

A Study on the Energy Efficiency of a Geothermal Heat Pump System in use the Outdoor Reset Control Application (외기보상제어 적용에 따른 지열 히트펌프 시스템의 에너지 효율 향상에 관한 연구)

  • Jung, Young-Ju;Kim, Hyo-Jun;Lee, Yong-Ho;Hwang, Jung-Ha;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • The government is fostering a renewable energy industry as an alternative to handle the energy crisis. Among the renewable energy systems available, geothermal energy is being highlighted as being highly efficient and safely operable without the effect of outdoor air. Accordingly, a study on the geothermal heat pump is in progress in various worldwide perspective. However, Geothermal energy is only in charge of part load of the building due to the high initial installation cost in korea. Moreover, its efficiency is reduced due to the use of independent existing heat sources. In this study, after selecting the building containing the actual installed geothermal heat pump, the use of excellent geothermal heat pump systems was maximized in terms of the energy efficiency. The objective of this study is to show the operation method of geothermal heat pump system to improve energy efficiency through the TRNSYS simulation. This paper proposed operation methods of geothermal heat pump control according to outdoor air temperature. The result of this study is that existing operation method had some problems and if offered improvement is applied to real condition, energy consumption would be decreased.

Evaluation on the Cooling Performance of Geothermal-energy Using Heat Pump System in Mixed-use Residential Building (주상복합 건축물에 적용된 지열이용 히트펌프 시스템의 냉방성능 평가)

  • Kim, Yong-Shik;Kim, Jung-Heon;Hwang, Kwang-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.9-16
    • /
    • 2006
  • Geothermal-energy has been getting popular as a natural energy source for green buildings these days. Public building with gross area more than $3000m^2$, planned after March, 2005, should spend about 5% of total building cost for equipment run by natural energy source (e.g. geothermal, solar heat, solar power, etc) according to renewable energy promotion law in Korea. As a result geothermal-energy using heat pump system is emerging as a effective alternative for realistic and economic plan although design guidelines and construction code for the system is in progress and technical data is far from sufficient. The quantitative analysis on the performance of geothermal-energy using heat pump system is insufficient for appropriate design of it. In this paper, cooling performance of geothermal-energy using heat pump system of residential and retail etc. mixed-use building has been analyzed on the basis of temperature comparison between inlet and outlet of heat exchangers of the operating system. Additionally, dry-bulb temperature and relative humidity have been measured and analyzed together as an index of indoor thermal environment.