• 제목/요약/키워드: geotechnical simulation

검색결과 352건 처리시간 0.03초

A new decision method for construction scheme of shallow buried subway station

  • Qiu, Daohong;Yu, Yuehao;Xue, Yiguo;Su, Maoxin;Zhou, Binghua;Gong, Huimin;Bai, Chenghao;Fu, Kang
    • Geomechanics and Engineering
    • /
    • 제30권3호
    • /
    • pp.313-324
    • /
    • 2022
  • With the development of the economy, people's utilization of underground space are also improved, and a large number of cities have begun to build subways to relieve traffic pressure. The choice of subway station construction method is crucial. If an inappropriate construction method is selected, it will not only waste costs but also cause excessive deformation that may also threaten construction safety. In this paper, a subway station construction scheme selects model based on the AHP-fuzzy comprehensive evaluation. The rationality of the model is verified using numerical simulation and monitoring measurement data. Firstly, considering the economy and safety, a comprehensive evaluation system is established by selecting several indicators. Then, the analytic hierarchy process is used to determine the weight of the evaluation index, and the dimensionless membership in the fuzzy comprehensive evaluation method is used to evaluate the advantages and disadvantages of the construction method. Finally, the method is applied to Liaoyang east road station of Qingdao metro Line 2, and the results are verified by numerical simulation and monitoring measurement data. The results show that the model is scientific, practical and applicable.

The establishment of IB-SEM numerical method and verification of fluid-solid interaction

  • Wang, Jing;Li, Shu-cai;Mao, Xuerui;Li, Li-ping;Shi, Shao-shuai;Zhou, Zong-qing
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1161-1171
    • /
    • 2018
  • The interaction between particles and fluid was investigated by IB-SEM numerical method which is a combination of combing the spectral/hp element method and the rigid immersed boundary method. The accuracy of this numerical method was verified based on the computed results with the traditional body-fitted mesh in numerical simulation of the flow through the cylinder. Then the governing equations of particles motion and contact in fluid are constructed. The movement of the particles and the interaction between the fluid and the particles are investigated. This method avoided the problem of low computational efficiency and error caused by the re-division of the grid when the solids moved. Finally, the movement simulation of multi particles in the fluid was carried out, which can provide a completely new numerical simulation method.

Field measurement and numerical simulation of excavation damaged zone in a 2000 m-deep cavern

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Qin, Yang;Li, Peng;Li, Yujie
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.399-413
    • /
    • 2018
  • This paper addresses the issue of field measurement of excavation damage zone (EDZ) and its numerical simulation method considering both excavation unloading and blasting load effects. Firstly, a 2000 m-deep rock cavern in China is focused. A detailed analysis is conducted on the field measurement data regarding the mechanical response of rock masses subjected to excavation and blasting operation. The extent of EDZ is revealed 3.6 m-4.0 m, accounting for 28.6% of the cavern span, so it is significantly larger than rock caverns at conventional overburden depth. The rock mass mechanical response subjected to excavation and blasting is time-independent. Afterwards, based on findings of the field measurement data, a numerical evaluation method for EDZ determination considering both excavation unloading and blasting load effects is presented. The basic idea and general procedures are illustrated. It features a calibration operation of damage constant, which is defined in an elasto-plastic damage constitutive model, and a regression process of blasting load using field blasting vibration monitoring data. The numerical simulation results are basically consistent with the field measurement results. Further, some issues regarding the blasting loads, applicability of proposed numerical method, and some other factors are discussed. In conclusion, the field measurement data collected from the 2000 m-deep rock cavern and the corresponding findings will broaden the understanding of tunnel behavior subjected to excavation and blasting at great depth. Meanwhile, the presented numerical simulation method for EDZ determination considering both excavation unloading and blasting load effects can be used to evaluate rock caverns with similar characteristics.

The investigation of the applicability of Monte Carlo Simulation in analyzing TBM project requirements

  • Ulku Kalayci Sahinoglu
    • Geomechanics and Engineering
    • /
    • 제39권1호
    • /
    • pp.1-11
    • /
    • 2024
  • Geotechnical parameter estimation is critical to the design, performance, safety, and cost and schedule management in Tunnel Boring Machine projects. Since these parameters vary within a certain range, relying on mean values for evaluation introduces significant risks to the project. Due to the non-homogeneous characteristics of geological formation, data may not exhibit a normal distribution and the presence of outliers might be deceptive. Therefore, the use of reliable analyses and simulation models is inevitable in the course of the data evaluation process. Advanced modeling techniques enable comprehensive analysis of the project data and allowing to model the uncertainty in geotechnical parameters. This study involves using Monte Carlo Simulation method to predict probabilistic distributions of field data, and therefore, establish a basis for designs and in turn to minimize project risks. In the study, 166 sets of geotechnical data Obtained from 35 boreholes including Standard Penetration Test, Limit Pressure, Liquid Limit, and Plastic Limit values, which are mostly utilized parameters in estimating project requirements, were used to estimate the geotechnical data distribution of the study field. In this context, firstly, the data was subjected to multi-parameter linear regression and variance analysis. Then, the obtained equations were implemented into a Monte Carlo Simulation, and probabilistic distributions of the geotechnical data of the field were simulated and corresponding to the 90% probability range, along with the minimum and maximum values at the 5% probability levels presented. Accordingly, while the average SPT N30 value is 42.86, but the highest occurrence rate is 50.81. For Net Limit Pressure, the average field data is 17.07 kg/cm2, with the maximum occurrence between 9.6 kg/cm2 and 13.7 kg/cm2. Similarly, the average Plastic Limit value is 22.32, while the most probable value is 20.6. The average Liquid Limit value is 56.73, with the highest probability at 54.48, as indicated in the statistical data distribution. Understanding the percentage distribution of data likely to be encountered in the project allows for accurate forecasting of both high and low probability scenarios, offering a significant advantage, particularly in ordering TBM requirements.

절리계 모사결과의 암반사면설계 적용 사례 (A Case Study on Joint System Simulation Results Application to Rock Slope Design)

  • 김동휘;정혁일;김석기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.669-680
    • /
    • 2005
  • It is very difficult to determine the failure block scale in great rock slopes. Especially, postulating entire slope domain as a failure block without attention to discontinuity trace lenth makes very confuse and difficult to design rock slopes. In this paper, we estimate realistic failure block scale using joint system simulation method and introduce the application procedures on rock slope analysis. Besides, presenting how joint characteristics measurement and statistical analysis results are applicated to slope stability analysis design flow.

  • PDF

낙석 특성을 고려한 낙석 시뮬레이션 해석 연구 (A Study on the Analysis of Rockfall Simulation using Rockfall Characteristics)

  • 이종현;구호본;박혁진;배규진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.719-724
    • /
    • 2005
  • It conducted an analysis and the research against kinetic energy distribution, velocity and bounce height according to rockfall characteristics using rockfall simulation program in cut-slope. This study considered kinetic energy and bounce height of rockfall for efficient establishment of rockfall protection fencefence that is countermeasure in cut-slope.

  • PDF

3차원 수치해석을 이용한 군말뚝기초의 반복수평하중재하실험에 대한 연구 (3D numerical simulation of group-pile foundation subjected to horizontal cyclic loading)

  • 진영지;김진만;최봉혁;이대영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.515-518
    • /
    • 2010
  • Horizontal forces may form a major part of the loading system for structures supported on pile groups. It is known that during a strong earthquake, the dynamic behavior of a group-pile foundation is related not only to the inertial force coming from the superstructures but also to the deformation of the surrounding ground. Therefore, it is necessary to understand the behaviors of the group-pile foundations and superstructures during major earthquakes. In this paper, numerical simulation of real-scale group-pile foundation subjected to horizontal cyclic loading is conducted by using a program named as DBLEAVES. In the analysis, nonlinear behaviors of ground and piles are described by cyclic mobility model and axial force dependent model (AFD model). The purpose of this paper is to prove availability of the analysis method by comparing numerical results and test results.

  • PDF

Model test and numerical simulation on the bearing mechanism of tunnel-type anchorage

  • Li, Yujie;Luo, Rong;Zhang, Qihua;Xiao, Guoqiang;Zhou, Liming;Zhang, Yuting
    • Geomechanics and Engineering
    • /
    • 제12권1호
    • /
    • pp.139-160
    • /
    • 2017
  • The bearing mechanism of tunnel-type anchorage (TTA) for suspension bridges is studied. Model tests are conducted using different shapes of plug bodies, which are circular column shape and circular truncated cone shape. The results show that the plug body of the latter shape possesses much larger bearing capacity, namely 4.48 times at elastic deformation stage and 4.54 times at failure stage compared to the former shape. Numerical simulation is then conducted to understand the mechanical and structural responses of plug body and surrounding rock mass. The mechanical parameters of the surrounding rock mass are firstly back-analyzed based on the monitoring data. The calculation laws of deformation and equivalent plastic strain show that the numerical simulation results are rational and provide subsequent mechanism analysis with an established basis. Afterwards, the bearing mechanism of TTA is studied. It is concluded that the plug body of circular truncated cone shape is able to take advantage of the material strength of the surrounding rock mass, which greatly enhances its bearing capacity. The ultimate bearing capacity of TTA, therefore, is concluded to be determined by the material strength of surrounding rock mass. Finally, recommendations for TTA design are proposed and discussed.

Combined bi-borehole technology for grouting and blocking of flowing water in karst conduits: Numerical investigation and engineering application

  • Pan, Dongdong;Zhang, Yichi;Xu, Zhenhao;Li, Haiyan;Li, Zhaofeng
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.391-405
    • /
    • 2022
  • A newly proposed grouting simulation method, the sequential diffusion solidification method was introduced into the numerical simulation of combined bi-borehole grouting. The traditional, critical and difficult numerical problem for the temporal and spatial variation simulation of the slurry is solved. Thus, numerical simulation of grouting and blocking of flowing water in karst conduits is realized and the mechanism understanding of the combined bi-borehole technology is promoted. The sensitivity analysis of the influence factors of combined bi-borehole grouting was investigated. Through orthogonal experiment, the influences of proximal and distal slurry properties, the initial flow velocity of the conduit and the proximal and distal slurry injection rate on the blocking efficiency are compared. The velocity variation, pressure variation and slurry deposition phenomenon were monitored, and the flow field characteristics and slurry outflow behavior were analyzed. The interaction mechanism between the proximal and distal slurries in the combined bi-borehole grouting is revealed. The results show that, under the orthogonal experiment conditions, the slurry injection rate has the greatest impact on blocking. With a constant slurry injection rate, the blocking efficiency can be increased by more than 30% when using slurry with weak time-dependent viscosity behavior in the distal borehole and slurry with strong time-dependent viscosity behavior in the proximal borehole respectively. According to the results of numerical simulation, the grouting scheme of "intercept the flow from the proximal borehole by quick-setting slurry, and grout cement slurry from the distal borehole" is put forward and successfully applied to the water inflow treatment project of China Resources Cement (Pingnan) Limestone Mine.

사면 안정해석에 적용되는 지반강도정수($C, _{\Phi}$)와 사면경사 민감도 분석 (Sensitivity Analysis of Shear Strength Parameters($C, _{\Phi}$)and Slope Angel in Slope Stability Analysis)

  • 백용;배규진;권오일;장수호;구호본
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.179-184
    • /
    • 2005
  • Shear strength parameters obtained from filed survey are important factors in the analysis of slope stability. In this study, sensitivity analysis was performed to evaluate the effect of input parameters on the analysis of slope stability. The input parameters selected for sensitivity analysis were slope angle, cohesion, and friction angle. Monte-Carlo Simulation method was used for calculating input parameters and the factor of safety was computed by means of limit equilibrium method. A rock slope, which has failed in the field, was used for the sensitivity analysis in the analysis of slope stability. The result of analysis shows that the factor of safety of the rock slope was a little low. From partial correlation coefficient(PPC) of input parameters determined from the sensitivity analysis, slope stability was dependant on cohesion and slope angle. The effect of friction angle was lower than that of cohesion and slope angle on slope stability.

  • PDF