• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.027 seconds

Development and Application of Integrated Settlement Management System for Construction and Maintenance of Concrete Railway (콘크리트 궤도의 시공 및 유지관리를 위한 침하관리 통합 시스템의 구축 및 활용)

  • Woo, Sang-Inn;Chun, Sung-Ho;Chung, Choong-Ki;Lee, Il-Hwa;Kwon, Oh-Jung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1196-1202
    • /
    • 2007
  • In construction of high speed railway, the fan shape is limited to achieve reduction of required travel time and concrete railway which has structural stability and induces small maintenance cost with allowable ground settlement is recently applied. So construction of concrete railway on soft ground in which considerable ground settlement occurs increases and settlement management in soft ground section is required. Field monitoring on ground movement and integrated geotechnical information system which manages construction, design, and field monitoring data are essential for settlement management of concrete railway subgrade. Site investigation data are also required due to future repair work. Therefore in this study, integrated geotechnical information system for construction and maintenance of concrete railway is developed. The developed system consists of a database and an application program. The database contains site investigation, construction, design, and field monitoring data throughout a railway. Application program performs various functions on managing and utilizing information in the database with graphic visualization of output. And by providing integrating information with comprehensible visual displays, the applicability and effectiveness of the developed system for construction and maintenance management were confirmed.

  • PDF

A Technical Application of Resistivity Tomography in Cut Slope (절개사면에서 전기비저항 토모그래피 적용 기법)

  • Park, Chung-Hwa;Park, Jong-Oh
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.271-277
    • /
    • 2007
  • To find out the anomalous zone in cut slope composed of phyllite and shist, we performed resistivity tomography using a pole-dipole way. The electrical distribution that propagates from a current source in lower part of slope is measured by a potential electrode in upper part of slope. Apparent resistivity data are inverted with an iterative regularized inversion method to reconstruct 3D resistivity image. By comparing with the resistivity images in relation to each section, the images of anomalous zone correspond to their positions represented in cut slope. Therefore, the application of resistivity tomography in cut slope is useful to recognize the extension of anomalous zone.

A Study on the Design Loads of NATM Tunnel Concrete Lining (NATM 터널 콘크리트라이닝 설계하중에 관한 연구)

  • 천병식;신영완
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.96-108
    • /
    • 2001
  • A concrete lining of NATM tunnel is the final product of a process that involves planning and evaluation of user needs, geotechnical investigations, analysis of ground-lining interaction, construction, and observations and modifications during construction. The designer must consider the lining in context of the many function, construction, and geotechnical requirements. Also, the loss of supporting capacity of shotcrete lining due to poor rock qualities and shotcrete erosion must be considered. The values, shapes, and estimating methods of rock load and water pressure are very different with every designers. Estimating methods of rock loads used in the design of NATM tunnel concrete lining are investigated. Structural analyses are done in various load combinations, and the member forces(moment, axial force and shear force) are compared. The adequate load combination of rock load and water pressure is proposed.

  • PDF

The 3-Dimensional Tunnel Analysis Considering Stress Concentration . Load Distribution Ratio (응력집중을 고려한 터널의 3차원 거동에 관한 연구 -하중분담률 중심으로)

  • 이인모;최항석
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.87-110
    • /
    • 1996
  • To simulate the three4imensional effect occurring near the tunnel face in a two -dimensional model, empirical load -dirtribution ratio concept is frequently used in tunnel design. In this paper, three -dimensional analysis is performed and its results are compared with those of two dimensional analysis'to investigate the applicability of the loadiistribution ratio concept. Especially, stress concentration near the tunnel face is investigated in depth. A parametric study is performed to investigate the effect of each factor on the load distribution ratio. The factors considered here include unsupported span length, initial stress, rock quality, tunnel size and the depth of tunnel location Moreover, the load -distribution ratios for the typical tunnel sections in Seoul Subway to be used in the tunnel design are suggested.

  • PDF

A Case Study of Measuring Residual Groundwater Level on Reclaimed and Dredging Clay Layer (준설점토 지반상 잔류 지하수위의 계측 사례 연구)

  • Yang Tae-Seon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.63-72
    • /
    • 2005
  • Grounwater level applied on dredged and reclaimed clay layer was assumed to be the same value under design criterion as field test one, but actually differences are found through the monitoring test. In this study, a case study of measuring residual groundwater level is performed in ground improvement construction of Gwangyang container terminal and hinterland. With priority given to residual groundwater level measured during construction and management period of 9 years, it is investigated that residual groundwater level (R. GWL) could be applied reasonably to the design, construction, and use stages of the container harbor and land development.

A Study on the Skin Friction of Piles Driven into Residual Soils (풍화잔류토 지반에 타설된 말뚝의 주면마찰 특성 연구)

  • 이명환;이인모
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.21-30
    • /
    • 1992
  • Though the pile skin friction can take substantial amount of load carrying capacity, it has often been ignored in the design. Even when the pile skin friction is taken into consideration, it is questionable about the reliability of estimating it. It has been even worse in Korea. since in most cases the available information is only the SPT N values and not much information has been known about the correlation between N value and the pile skin friction in residual soils. With SPLT (Simple Pile Loading Test) it is possible to measure the pile skin friction separately from the tip resistance. In this research, results of the measured pile skin friction in residual soils are analysed. And a new design correlation based on SPT N value is proposed.

  • PDF

Seismic response of bridge pier supported on rocking shallow foundation

  • Deviprasad, B.S.;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.73-84
    • /
    • 2020
  • In the seismic design of bridges, formation of plastic hinges plays an important role in the dissipation of seismic energy. In the case of conventional fixed-base bridges, the plastic hinges are allowed to form in the superstructure alone. During seismic event, such bridges may be safe from collapse but the superstructure undergoes significant plastic deformations. As an alternative design approach, the plastic hinges are guided to form in the soil thereby utilizing the inevitable yielding of the soil. Rocking foundations work on this concept. The formation of plastic hinges in the soil reduces the load and displacement demands on the superstructure. This study aims at evaluating the seismic response of bridge pier supported on rocking shallow foundation. For this purpose, a BNWF model is implemented in OpenSees platform. The capability of the BNWF model to capture the SSI effects, nonlinear behavior and dynamic loading response are validated using the centrifuge and shake table test results. A comparative study is performed between the seismic response of the bridge pier supported on the rocking shallow foundation and conventional fixed-base foundation. Results of the study have established the beneficial effects of using the rocking shallow foundation for the seismic response analysis of the bridge piers.

Behaviors of Soil-cement Piles in Soft Ground (연약지반에 설치된 소일시멘트말뚝의 거동)

  • Kim, Young-Uk;Kim, Byoung-Il;Xiaohong Bai
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.45-51
    • /
    • 2003
  • This study was undertaken to investigate behavior characteristics of soil-cement piles in composite foundations through computer analysis. The soil-cement piles with cushion subjected to the vertical central loading only were analyzed using the program - “ABAQUS”. The investigation was conducted for various conditions including soil property, pile dimension, replacement ratio, pile/soil modular ratio, and load intensity. The results of analysis provided not only the load transfer and settlement behaviors but also the effective pile length and load distribution between a pile and soil. It was concluded that in the design of composite foundations, the modular ratio and replacement ratio are two design parameters.

Partial safety factors for retaining walls and slopes: A reliability based approach

  • GuhaRay, Anasua;Baidya, Dilip Kumar
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.99-115
    • /
    • 2014
  • Uncertainties in design variables and design equations have a significant impact on the safety of geotechnical structures like retaining walls and slopes. This paper presents a possible framework for obtaining the partial safety factors based on reliability approach for different random variables affecting the stability of a reinforced concrete cantilever retaining wall and a slope under static loading conditions. Reliability analysis is carried out by Mean First Order Second Moment Method, Point Estimate Method, Monte Carlo Simulation and Response Surface Methodology. A target reliability index ${\beta}$ = 3 is set and partial safety factors for each random variable are calculated based on different coefficient of variations of the random variables. The study shows that although deterministic analysis reveals a safety factor greater than 1.5 which is considered to be safe in conventional approach, reliability analysis indicates quite high failure probability due to variation of soil properties. The results also reveal that a higher factor of safety is required for internal friction angle ${\varphi}$, while almost negligible values of safety factors are required for soil unit weight ${\gamma}$ in case of cantilever retaining wall and soil unit weight ${\gamma}$ and cohesion c in case of slope. Importance of partial safety factors is shown by analyzing two simple geotechnical structures. However, it can be applied for any complex system to achieve economization.

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.