• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.027 seconds

A Study on Determining the Design Parameter ($N_c$, $T_i$) of the Surface Reinforcement Method for Soft Ground (연약지반 표층처리공법 설계정수(지지력계수$N_c$, 인장력$T_i$) 산정방법에 관한 고찰)

  • Ham, Tae-Gew;Seo, Se-Gwan;Cho, Sam-Deok;Yang, Kee-Sok;You, Seung-Kyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.750-758
    • /
    • 2009
  • This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing the design parameter for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 25 kinds of the laboratory model tests with the end restraint conditions of the reinforcement that comprises the constrained and partially constrained (3 types) conditions were conducted. And the result indicated that the modulus of subgrade reaction or $N_c$ value (5.3) apparently overestimated the bearing capacity of very soft ground such as dredged ground. Moreover, as a result of model test by partially constraining the preload of 23.0kgf using geotextile, the effect of bearing capacity($q_1$) appeared to be the largest till the loading stress was $0.4tf/m^2$ due to cohesion, while it reached 75% of the maximum bearing force after $0.4tf/m^2$ due to increase in the effect of bearing capacity($q_2$) caused by the tensile force of the reinforcement. Such results tended to have appeared constantly or very similarly with each other, irrespective of the type of reinforcement (geogrid, steel bar) and constraint conditions.

  • PDF

A Study on the Application of Simple Reliability Analysis for Soil Improvement (연약지반개량에 대한 신뢰성해석 간편법의 적용성 연구)

  • Jang, Yeon-Soo;Park, Joon-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.759-767
    • /
    • 2009
  • Recently, there is a trend to introduce a reliability approach to the design of al large scale improvement of weak ground due to the uncertainty of the influence factors in the consolidation. Since the reliability analysis is not easily adopted to geotechnical engineers because of some difficulties in working up the theories, Duncan(2000) proposed a simplified method for using reliability method to goetechnical problems. In this study, the applicability of Duncan's simplified reliability approach is evaluated by comparing the traditional reliability results with Duncan's. In the sensitivity analysis, the two results were quite similar. However, the probability of failure showed an error range of 20~50% and further Duncan's approach could not make a distinction for the distribution of geotechnical random variables. The simplified reliability method seems to be used properly in preliminary design if it is used supplementary with the deterministic method.

  • PDF

Soil and ribbed concrete slab interface modeling using large shear box and 3D FEM

  • Qian, Jian-Gu;Gao, Qian;Xue, Jian-feng;Chen, Hong-Wei;Huang, Mao-Song
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.295-312
    • /
    • 2017
  • Cast in situ and grouted concrete helical piles with 150-200 mm diameter half cylindrical ribs have become an economical and effective choice in Shanghai, China for uplift piles in deep soft soils. Though this type of pile has been successful used in practice, the reinforcing mechanism and the contribution of the ribs to the total resistance is not clear, and there is no clear guideline for the design of such piles. To study the inclusion of ribs to the contribution of shear resistance, the shear behaviour between silty sand and concrete slabs with parallel ribs at different spacing and angles were tested in a large direct shear box ($600mm{\times}400mm{\times}200mm$). The front panels of the shear box are detachable to observe the soil deformation after the test. The tests were modelled with three-dimensional finite element method in ABAQUS. It was found that, passive zones can be developed ahead of the ribs to form undulated failure surfaces. The shear resistance and failure mode are affected by the ratio of rib spacing to rib diameter. Based on the shape and continuity of the failure zones at the interface, the failure modes at the interface can be classified as "punching", "local" or "general" shear failure respectively. With the inclusion of the ribs, the pull out resistance can increase up to 17%. The optimum rib spacing to rib diameter ratio was found to be around 7 based on the observed experimental results and the numerical modelling.

The Development of 3-D System for Visualizing Information on Geotechnical Site Investigation (지반조사 정보의 3차원 가시화 시스템 개발)

  • 홍성완;배규진;서용석;김창용;김광염
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.179-188
    • /
    • 2002
  • With improving computer penormance and advancing simulation techniques, a growing number of softwares are being developed for visualization of investigation results in geotechnical problems. It is a very important subject for geological site investigation to understand or predict if there would be any hazardous geological conclition that might cause any increase of construction costs or an extension of construction period. A 3-D (three-climensional) visualization technique may be one of the powerful tools to overcome an uncertainty problem of geologica] site investigatior. The paper describes an overview of a newly developed geotechnical 3-D interpretation system for the purpose of applying the 3-D visualization technique, GIS (geographic information system) and D/B (database) to tunnel design and construction. VR (virtual reality) and 3-D visualization techniques are applied in order to develope the 3-D model of characteristics and structures of rock mass. D/B system for all the materials related to site investigation and tunnel construction is developed using GIS technique. This system is very useful for civil engineers to make a plan of tunnel construction at the design stage and also during construction with the advantage of improving the economy and safety of tunnels.

Evaluation of Influencing Factors on Settlement Behavior of Very Soft Ground with Reinforced Surface (표층처리공법으로 개량된 초연약지반의 침하거동에 미치는 영향인자 분석)

  • You, Seung-Kyong;Lee, Jong-Sun;Ham, Tae-Gew;Yang, Kee-Suk;Cho, Sam-Deok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.85-92
    • /
    • 2008
  • It is necessary to develop a rational design method for surface reinforcement of very soft ground because most current design works rely on merely crude empirical correlations. In this paper, the mechanical behavior of very soft ground that is surficially reinforced was investigated with the aid of a series of numerical analyses. Several material properties of each dredged soft ground, reinforcement and backfill sand mat have been exercised in the numerical analysis. The result of numerical analysis was compared with those of the laboratory model test. Through the matching process between the numerical and experimental result, it is possible to determine representative material properties of the dredged soft ground, reinforcements and backfill sand mat. These verified material properties permit to evaluate the effect of the stiffness of reinforcement and the thickness of sand mat on the overall deformation of the reinforced soft ground.

Applicability of Steel-Concrete Composite Drilled Shafts by Pile Loading Tests (말뚝 재하시험을 이용한 강관합성 현장타설말뚝의 적용성 분석)

  • Lee, Ju-Hyung;Chung, Moon-Kyung;Kwak, Ki-Seok;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.111-123
    • /
    • 2010
  • The steel pipe of steel-concrete composite drilled shafts increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, pile loading tests were performed to analyze the field applicability of a steel-concrete composite drilled shafts. The test ground consisted of 5~7 m thick soil underlying rock mass. The test piles consisted of two steel-concrete composite drilled shafts, which were the concrete filled steel pipe piles with the diameter of 0.508 m, and a concrete pile with the same diameter. The test results showed that the boundary between the upper steel composite section and the lower concrete section was structurally weak and needs to be reinforced by using a inner steel cage. If the boundary is located in deep depth, which is not influenced by lateral load, the allowable strength of the lower concrete section increases, so an economical design can be performed by increasing the design load of steel-concrete composite drilled shafts.

Seismic Zonation of Site Period at Daejeon within Spatial GIS tool (공간 GIS 기법을 활용한 대전 지역 부지 주기의 지진 구역화)

  • Sun, Chang-Guk;Shin, Jin-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.563-574
    • /
    • 2008
  • Most of earthquake-induced geotechnical hazards have been caused by the site effects relating to the amplification of ground motion, which are strongly influenced by the local geologic conditions such as soil thickness or bedrock depth and soil stiffness. In this study, an integrated GIS-based information system for geotechnical data, called geotechnical information system (GTIS), was constructed to establish a regional counterplan against earthquake-induced hazards at an urban area, Daejeon, which is represented as a hub of research and development in Korea. To build the GTIS for the area of interesting, pre-existing geotechnical data collections were performed across the extended area including the study area and a walk-over site survey was additionally carried out to acquire surface geo-knowledge data. For practical application of the GTIS used to estimate the site effects at the area of interesting, seismic microzoning map of the characteristic site period was created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation for site classification according to the spatial distribution of the site period was also performed to determine the site amplification coefficients for seismic design and seismic performance evaluation at any site in the study area. Based on the case study on seismic zonations at Daejeon, it was verified that the GIS-based GTIS was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation.

  • PDF

Development of Subsurface Spatial Information Model System using Clustering and Geostatistics Approach (클러스터링과 지구통계학 기법을 이용한 지하공간정보 모델 생성시스템 개발)

  • Lee, Sang-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.64-75
    • /
    • 2008
  • Since the current database systems for managing geotechnical investigation results were limited by being described boring test result in point feature, it has been trouble for using other GIS data. Although there are some studies for spatial characteristics of subsurface modeling, it is rather lack of being interoperable with GIS, considering geotechnical engineering facts. This is reason for difficulty of practical uses. In this study, we has developed subsurface spatial information model through extracting needed geotechnical engineering data from geotechnical information DB. The developed geotechnical information clustering program(GEOCL) has made a cluster of boring formation(and formation ratio), classification of layer, and strength characteristics of subsurface. The interpolation of boring data has been achieved through zonal kriging method in the consideration of spatial distribution of created cluster. Finally, we make a subsurface spatial information model to integrate with digital elevation model, and visualize 3-dimensional model by subsurface spatial information viewing program(SSIVIEW). We expect to strengthen application capacity of developed model in subsurface interpretation and foundation design of construction works.

  • PDF

Case Study on the Tunnel Collapses during the Construction and Application of Geotechnical Investigation (터널 시공 중 지반 관련 사고 사례의 원인 분석과 지반 조사 결과의 활용에 관한 검토)

  • Park, Nam-Seo;Lee, Chi-Mun;Gang, Sang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.04a
    • /
    • pp.47-60
    • /
    • 1998
  • It is considered in this paper that the main causes of tunnel collapse during the construction were the insufficiency of data of geotechnical investigations, or their limits due to special ground condition such as its heterogeneity and anisotropy It is thought that safety of ground can be affected by the geological conditions such as presences of discontinuities in good intact rocks, and considered to be necessary that awareness of the conditions of discontinuities in advance is important to apply adequate reinforcement measures. It is also shown that a serious accident had occurred because of the unawareness of the permeable alluvial deposits at the top of the tunnel. And it is shown that the example of application of the results of geotechnical investigation such as face-mapping, pilot boring etc. during tunnel construction, and a serious deformation of tunnel under special geological condition. Therefore, it is strongly recommended to perform an adequate geotechnical investigation to confirm the geotechnical conditons of ground before design, and supplimentary investigation is also needed depending on conditions for safe and econonic construction.

  • PDF

A study on the machine load on shield advancing between soil ground and mix ground included core stone (토사지반과 핵석이 포함된 복합지반에서 쉴드TBM 굴진 시 장비부하에 관한 연구)

  • Kim, Ki-Hwan;Kim, Hyouk;Mun, Cheol-Hwa;Kim, Young-Hyu;Kim, Dong-Ho;Lee, Jae-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1039-1048
    • /
    • 2018
  • In urban tunnel construction, most of the Shield TBM method is applied to secure the safety of buildings and to minimize risks. On the other hand, in the urban development process, landfills are often embanked or improving in many cases, so that the boundary between the surface and the rock is often heterogeneous. In case of ground condition such as alluvial soil, granite, decomposed granite, core stone and rock with various layers, datas on shield TBM advancing according to each ground condition are analyzed, The characteristics of machine load were compared and analyzed. As a result, it can be predicted that the change of ground condition can be predicted by the tendency of discharge volume, thrust force and cutting wheel torque when the cutter is checked and replaced regularly on advancing under maintaining the design slurry pressure.