• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.024 seconds

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

Hydrogeochemical, Stable and Noble Gas Isotopic Studies of Hot Spring Waters and Cold Groundwaters in the Seokmodo Hot Spring Area of the Ganghwa Province, South Korea (강화 석모도 지역 온천수와 지하수의 수리지구화학 및 동위원소 연구)

  • Kim, Kyu-Han;Jeong, Yun-Jeong;Jeong, Chan-Ho;Keisuke, Nagao
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.15-32
    • /
    • 2008
  • The hydrochemical and isotopic (stable isotopes and noble gas isotopes) analyses for hot spring waters, cold groundwaters and surface water samples from the Seokmodo hot spring area of the Ganghwa province were carried out to characterize the hydrogeochemical characteristics of thermal waters and to interpret the source of thermal water and noble gases and the geochemical evolution of hot spring waters in the Seokmodo geothermal system. The hot spring waters and groundwaters show a weakly acidic condition with the pH values ranging from 6.42 to 6.77 and 6.01 to 7.71 respectively. The outflow temperature of the Seokmodo hot spring waters ranges from $43.3^{\circ}C\;to\;68.6^{\circ}C$. Relatively high values of the electrical conductivities which fall between 60,200 and $84,300{\mu}S/cm$ indicate that the hot spring waters were mixed with seawater in the subsurface geothermal system. The chemical compositions of the Seokmodo hot spring waters are characterized by Na-Ca-Cl water type. On the other hand, cold groundwaters and surface waters can be grouped into three types such as the Na(Ca)-$HCO_3$, Na(Ca)-$SO_4$ and Ca-$HCO_3$ types. The ${\delta}^{18}O\;and\;{\delta}D$ values of hot spring waters vary from -4.41 to -4.47%o and -32.0 to -33.5%o, respectively. Cold groundwaters range from -7.07 to -8.55%o in ${\delta}^{18}O$ and from -50.24 to -59.6%o in ${\delta}D$. The oxygen and hydrogen isotopic data indicate that the hot spring waters were originated from the local meteoric water source. The enrichments of heavy isotopes ($^{18}O\;and\;^2H$) in the Seokmodo hot spring waters imply that the thermal water was derived from the diffusion Bone between fresh and salt waters. The ${\delta}^{34}S$ values ranging from 23.1 to 23.5%o of dissolved sulfate are very close to the value of sea water sulfate of ${\delta}^{34}$S=20.2%o in this area, indicating the origin of sulfate in hot springs from sea water. The $^3H/^4He$ ratio of hot spring waters varies from $1.243{\times}10^{-6}\;to\;1.299{\times}10^{-6}cm^3STP/g$, which suggests that He gas in hot spring waters was partly originated from a mantle source. Argon isotopic ratio $(^{40}Ar/^{36}Ar=298{\times}10^{-6}cm^3STP/g)$ in hot spring waters corresponds to the atmospheric value.

Case Study of Hydrochemical Contamination by Antimony Waste Disposal in Korea (국내 안티몬폐기물에 의한 수질화학적 오염 사례연구)

  • Jeong, Chan-Ho
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.471-482
    • /
    • 2008
  • This study was carried out to investigate the contamination characteristics of surface water, soil water and groundwater around and in antimony waste landfill site in Wonsung-ri, Yeonki-kun, Chungnam. The waste disposed in the study was excavated and transported to the other site in several years ago. For this study, we collected 35 water samples including groundwater, soil water and surface in the study site and also collected 2 groundwater samples from a comparison site. The data of chemical analysis of soil water samples show the antimony concentration of $48.75{\sim}74.81\;ppb$, which is much higher than groundwater in a comparison site and is highly excess than regulation level for a drinking water of some advanced countries. A relatively high antimony concentration was detected in three stream water samples nearby landfill site and two groundwater samples. Fe and Mn contents in soil water and stream water were measured as maxium 6.5 mg/L and 7.3 mg/L, respectively. Although other heavy metals of water samples in the study site are higher concentration than water sample of comparison site, their absolute levels are lower than regulation level for a drinking water. The chemical data of water samples are plotted widely from Ca - $HCO_3$ type to Ca - ($Cl +SO_4+NO_3$) type. Some groundwater show high contents of potassium and nitrate, which would come from fertilizer and sewage. Conclusively, some heavy metals including antimony have been still remained under the soil surface of the landfill site in the past. These metals have leaked out into nearby stream and groundwater system, and threaten the ecology, crops and the health of residents in this site. Therefore, the government have to prepare the strategy to prevent the diffusion of heavy metals into aquatic environment and have to process the reclamation work for contaminated site. It is also necessary to make a regulation level of the antimony concentration for a drinking water and soil environment in Korea.

A study on the effect of ground conditions of room and pillar method on pillar and room strain (격자형 지하공간의 지반조건이 암주와 룸 변형률에 미치는 영향에 대한 연구)

  • Ham, Hyeon Su;Kim, Yong Kyu;Park, Chi Myeon;Lee, Chul Ho;Kim, YoungSeok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.577-587
    • /
    • 2021
  • Room and Pillar method is an underground facility construction method that maximizes the strength of the in-situ ground. In order to secure the safety of the underground space, it is necessary to secure the safety of the room actually used in addition to the safety of pillar of the room and Pillar method. In this study, the evaluation method for the safety of the room and rock pillar in the room and pillar method was studied through numerical analysis. Numerical analysis was performed for a total of 125 cases using ground conditions, pillar width, and room width as parameters, and the results were derived. As for the safety factor of the pillar, it was confirmed that the safety factor increased when the strength of the ground increased, and it was confirmed that the increment in the safety factor decreased when the width of the pillar was widened. The room strain was evaluated by applying the Critical strain. As the width of the pillar became narrower, the Critical strain was higher, and as the width of the room became smaller, the Critical strain was smaller. As a result of the correlation analysis between the safety factor of the pillar and the room strain, it was possible to derive the upper limit of the room strain that can secure the standard safety factor of the pillar according to the width of the pillar. It is judged that the results derived from this study can be used as a guideline to secure the safety of the room when the actual design is performed in consideration of the ground conditions and room width.

Hydrochemical and Isotopic Characteristics, and Origin of Noble Gas for Low-temperature Hot Spring Waters in the Honam Area (호남지역 저온형 온천수의 수리지화학적 및 안정동위원소 특성과 영족기체의 기원에 관한 연구)

  • Jeong, Chan-Ho;Hur, Hyun-Sung;Nagao, Keisuke;Kim, Kyu-Han
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.635-649
    • /
    • 2007
  • Geochemical composition, stable isotopes $({\delta}^{18}O,\;{\delta}D,\;{\delta}^{34}S)$ and noble gases(He, Ne and Ar) of nine hot spring water and three groundwater for five hot springs(Jukam, Hwasun, Dokog, Jirisan, Beunsan) from the Honam area were analyzed to investigate the hydrogeochemical characteristics and the hydrogeochemical evolution of the hot spring waters, and to interpret the source of sulfur, helium and argon dissolved in the hot spring waters. The hot spring waters show low water temperature ranging from 23.0 to $30.5^{\circ}C$ and alkaline characteristics of pH 7.67 to 9.98. Electrical conductivity of hot spring waters is $153{\sim}746{\mu}S/cm$. Groundwaters in this area were characterized by the acidic to neutral pH range$(5.85{\sim}7.21)$, the wide electrical conductivity range $(44{\sim}165{\mu}S/cm)$. The geochemical compositions of hot spring and groundwaters can be divided into three water types: (1) $Na-HCO_3$ water type, (2) Na-Cl water type and (3) $Ca-HCO_3$ water type. The hot spring water of $Ca-HCO_3$ water type in early stage have been evolved through $Ca(Na)-HCO_3$ water type into $Na-HCO_3$ type in final stage. In particular, Jurim alkaline(pH 9.98) hot spring water plotted at the end point of $Na-HCO_3$ type in the Piper diagram is likely to arrive into the final stage in geochemical evolution process. Hydrogen and oxygen isotopic data of the hot spring water samples indicate that the hot spring waters originated from the local meteoric water showing latitude and altitude effects. The ${\delta}^{34}S$ value for sulfate of the hot spring waters varies widely from 0.5 to $25.9%o$. The sulfur source of most hot spring waters in this area is igneous origin. However, The ${\delta}^{34}S$ also indicates the sulfur of JR1 hot water is originated from marine sulfur which might be derived ken ancient seawater sulfates. The $^3He/^4He\;and\;^4He/^{20}Ne$ ratios of the hot spring waters range from $0.0143{\times}10^{-6}\;to\;0.407{\times}10^{-6}\;and\;6.49{\sim}584{\times}10^{-6}$, respectively. The hot spring waters are plotted on the mixing line between air and crustal components. It means that the He gas in the hot spring waters was mainly originated from crustal sources. However, the JR1 hot spring water show a little mixing ratio of the helium gas of mantle source. The $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range from $292.3{\times}10^{-6}\;to\;304.1{\times}10^{-6}$, implying the atmospheric argon source.