• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.035 seconds

Assessment of Surface Topographic Effect in Earthquake Ground Motion on the Upper Slope via Two-Dimensional Geotechnical Finite Element Modeling (이차원 지반 유한요소 모델링을 통한 사면상부 지진지반운동의 지표면 지형효과 분석)

  • Sun, Chang-Guk;Bang, Kiho;Cho, Wanjei
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.201-213
    • /
    • 2015
  • Site effects resulting in the amplification of earthquake ground motion are strongly influenced not only by the subsurface soil conditions and structure, but also by the surface topography. Yet, over the last several decades, most studies of site-specific seismic responses in Korea have focused primarily on the seismic amplification associated with geologic and soil conditions. For example, the effects of local geology are now well established and have been incorporated into current Korean seismic design codes, whereas topographic effects have not been considered. To help address this shortcoming, two-dimensional (2D) seismic site response analyses, using finite element (FE) ground modeling with three different slope angles, were performed in order to assess the site effects of surface topography. We then compared our results, specifically peak ground acceleration (PGA) and acceleration response spectrum, to those of one-dimensional (1D) FE model analyses conducted alongside our study. Throughout much of the upper slope region, PGAs and spectral accelerations are larger in the 2D analyses than in the 1D analyses as a result of the topographic effect.

Dynamic-stability Evaluation of Unsaturated Road Embankments with Different Water Contents (함수비에 따른 불포화 도로성토의 동적 안정성 평가)

  • Lee, Chung-Won;Higo, Yosuke;Oka, Fusao
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.5-21
    • /
    • 2014
  • It has been pointed out that the collapses of unsaturated road embankments caused by earthquake are attributed to high water content caused by the seepage of the underground water and/or the rainfall infiltration. Hence, it is important to study influences of water content on the dynamic stability and deformation mode of unsaturated road embankments for development of a proper design scheme including an effective reinforcement to prevent severe damage. This study demonstrates dynamic centrifugal model tests with different water contents to investigate the effect of water content on deformation and failure behaviors of unsaturated road embankments. Based on the measurement of displacement, the pore water pressure and the acceleration during dynamic loading, dynamic behavior of the unsaturated road embankments with about optimum water content and the higher water content than the optimum one have been examined. In addition, an image analysis has revealed the displacement field and the distributions of strains in the road embankment, by which deformation mode of the road embankment with higher water content has been clarified. It has been confirmed that in the case of higher water content the settlement of the crown is large mainly owing to the volume compression underneath the crown, while the small confining pressure at the toe and near the slope surface induces large shear deformation with volume expansion.

Evaluation of Thermal Response Test of Energy Pile (에너지 파일의 현장 열응답 시험에 관한 연구)

  • Yoon, Seok;Lee, Seung-Rae;Kim, Min-Jun;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.93-99
    • /
    • 2014
  • Use of geothermal energy has been increased for its economical application and environmentally friendly utilization. Particularly, for energy piles, a spiral coil type ground heat exchanger (GHE) is more preferred than line type GHEs such as U and W shaped GHEs. A PHC energy pile with spiral coil type GHE was installed in an area of partially saturated dredged soil deposit, and a thermal response test (TRT) was conducted for 240 hours under a continuous operation condition. Besides, remolded soil samples from different layers were collected in the field, and soil specimens were reconstructed according to the field ground condition. Non-steady state probe methods were conducted in the lab, and ground thermal conductivity and thermal diffusivity were measured for the different soil layers. An equivalent ground thermal conductivity was calculated from the lab test results and it was compared with the field TRT result. The difference was less than 5%, which advocates the use of an equivalent ground thermal conductivity for the multi-layered ground. Furthermore, this paper also represents an equivalent ground thermal diffusivity evaluation method which is another very important design parameter.

Analysis of Cyclic Loading Transferred Mechanism on Geosynthetic-Reinforced and Pile-Supported Embankment (토목섬유로 보강된 성토지지말뚝 시스템의 반복하중 전이 메커니즘 분석)

  • Lee, Sung-Jee;Yoo, Min-Taek;Lee, Su-Hyung;Baek, Min-Cheol;Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.79-91
    • /
    • 2016
  • Geosynthetic-reinforced and Pile-supported (GRPS) embankment method is widely used to construct structures on soft ground due to restraining residual settlement and their rapid construction. However, effect of cyclic loading has not been established although some countries suggest design methods through many studies. In this paper, cyclic loading tests were conducted to analyze dynamic load transfer characteristics of pile-supported embankment reinforced with geosynthetics. A series of 3 case full scale model tests which were non-reinforced, one-layer-reinforced, two-layer reinforced with geosynthetics were performed on piled embankments. In these series of tests, the height of embankment and pile spacing were selected according to EBGEO (2010) standard in Germany. As a result of the vertical load parts on the pile and on the geosynthetic reinforcement measured separately, cyclic loads transferred by only arching effect decreased with strength geosynthetic-reinforced case. However, final loads on the pile showed no differences among the cases. These results conflict with previous studies that reinforcement with geosynthetics increases transfer load concentrated on piles. In addition, it is observed that the load transferred to pile decreases at the beginning of cycle number due to reduction of arching effected by cyclic loading. Based on these results, transferred mechanism for cyclic load on GRPS system has been presented.

Effect of Relative Density and Fines Content on Pullout Resistance Performance of Drilled Shafts (상대밀도와 세립분 함유율이 현장타설말뚝의 인발저항 성능에 미치는 영향에 관한 연구)

  • You, Seung-Kyong;Hong, Gigwon;Jeong, Minwoo;Shin, Heesoo;Lee, Kwang-Wu;Ryu, Jeongho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.37-47
    • /
    • 2018
  • This paper described a results of direct shear test and pullout test by using soil supported by drilled shafts in order to evaluate the effect of relative density and fines content on pullout resistance performance of drilled shafts. The result of direct shear test showed that the variation characteristics of internal friction angle and cohesion could be confirmed quantitatively. The result of pullout test also showed that the effect of relative density and fines content on pullout resistance performance of drilled shafts was confirmed. That is, the contribution of the internal friction angle and cohesion of soils on the pullout resistance performance of drilled shafts was found to vary, when the fines content was about 13% based on results direct shear test and pullout test. Therefore, at design of drilled shafts, the effect of skin friction resistance should be considered on the influence factor of strength parameters ($c-{\phi}$) according to the fines content of soil.

Strength Parameters and Shear Behaviors of North-Cheju Basalt Rubble Using Large-scale Triaxial Test (대형삼축압축시험을 이용한 북제주현무암 사석재의 강도정수 및 전단거동)

  • 정철민;김종수;채영수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.147-160
    • /
    • 2002
  • According to the Korean Design Code for port and harbor facilities, bearing capacity of rubble mound under eccentric and inclined load is calculated by the simplified Bishop method, and strength parameters are recommended to be c=0.2kg/$cm^2$ and \phi=35^P\circ}$ fur standard rubble if the compressive strength of parent rock is greater than 300kg/$cm^2$, according to research results by Junichi Mizukami(1991). But this facts have never been verified in Korea because there was no large-scale triaxial test apparatus until 2000 in Korea. For the first time in Korea, the large-scale triaxial test(sample diameter 30cm ; height 60cm) on the rubble originated from porous basalt rock in North-Cheju was accomplished. Then strength parameters for basalt rubble produced in North-Cheju are recommended to be c:0.3kg/$cm^2\; and \phi=36^{\circ}$ if the compressive strength of parent rock is greater than 400kg/$cm^2$. And the shear behavior characteristics of rubble, represented as particle breakage and dilatancy, are investigated.

Damage Assessment of Adjacent Structures due to Tunnel Excavation in Urban Areas (II) - Focused on the Variations of Building Stiffness Ratio - (도심지 터널 굴착에 따른 인접구조물의 손상평가에 관한 연구 (II) - 지상 건물의 강성비 변화를 중심으로 -)

  • 김창용;배규진;문현구;박치현;오명렬
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.81-98
    • /
    • 1999
  • The influence of tunnelling on buildings has become an important issue in urban areas. The problem is an interactive one: not only do tunnelling settlements affect existing structures, but existing structures affect tunnel-induced soil movements. In order to examine the constraint of surface settlement and the degradation of building damage parameters, 3-dimensional elasto-plastic finite element analyses are peformed. Also, in this paper, the results of the parametric studies for the variations of the damage parameters due to the ground movements are presented by utilizing 2-dimensional elasto-plastic finite element models, totally 162 models. The width of a structure, its bending and axial stiffness, its position relative to the tunnel and the depth of tunnel are considered. The interaction is shown by reference to commonly-used building damage parameters, namely angular distortion, deflection ratio, maximum building settlements, maximum differential settlements and horizontal strain. By introducing relative stiffness parameters which combine the bending and axial stiffness of the structure with its width and stiffness of soil, design curves are established. These give a guide as to the likely modification of the greenfield settlement trough caused by a surface structure. They can be used to give initial estimates of likely building damage.

  • PDF

Horizontal Consolidation Characteristics of Marine Clay Using Piezocone Test (Piezocone 시험을 이용한 해성점토의 수평압밀 특성 연구)

  • 이강운;윤길림;채영수
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.133-144
    • /
    • 2003
  • Horizontal consolidation characteristics of Busan marine clay were investigated by computing coefficient of horizontal consolidation from Piezocone data and comparing their results with those of standard consolidation test. It is well known that current prediction models of $c_h$ for high plastic soils have large uncertainties, and show a great difference between the predicted and the measured values. However, the spherical models and expanding cavity theory of Torstensson(1977), and Burns & Mayne(1998) based on modified Cam-Clay model with critical limit state concepts have relative reliability in estimating $c_h$ and good applicability in highly plasticity soils. In this paper, a normalization technique was used to evaluate $c_h$ using the Burns and Mayne's method based on the dissipation test, and their normalized consolidation curves give 0.015 of time factor($T_{50}$) when 50% degree of consolidation is completed. Comparison study using Piezocone data obtained at other similar ground site shows 1.5 times less systematicality than that of standard consolidation test, which indicates considerable approximation with the measured values because standard consolidation test gives the difference of three to few times compared with the measured values. In addition, design chart for estimating $c_h$ based on the chart from Robertson et al.(1992) and using the other method of the direct prediction from the of dissipation test was newly proposed. It is judged that new proposed chart is very applicable to Korean marine soils, especially in very high plastic soils.

Sampling Bias of Discontinuity Orientation Measurements for Rock Slope Design in Linear Sampling Technique : A Case Study of Rock Slopes in Western North Carolina (선형 측정 기법에 의해 발생하는 불연속면 방향성의 왜곡 : 서부 North Carolina의 암반 사면에서의 예)

  • 박혁진
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.145-155
    • /
    • 2000
  • Orientation data of discontinuities are of paramount importance for rock slope stability studies because they control the possibility of unstable conditions or excessive deformation. Most orientation data are collected by using linear sampling techniques, such as borehole fracture mapping and the detailed scanline method (outcrop mapping). However, these data, acquired by the above linear sampling techniques, are subjected to bias, owing to the orientation of the sampling line. Even though a weighting factor is applied to orientation data in order to reduce this bias, the bias will not be significantly reduced when certain sampling orientations are involved. That is, if the linear sampling orientation nearly parallels the discontinuity orientation, most discontinuities orientation data which are parallel to sampling line will be excluded from the survey result. This phenomenon can cause serious misinterpretation of discontinuity orientation data because critical information is omitted. In the case study, orientation data collected by using the borehole fracture mapping method (vertical scanline) were compared to those based on orientation data from the detailed scanline method (horizontal scanline). Differences in results for the two procedures revealed a concern that a representative orientation of discontinuities was not accomplished. Equal-area, polar stereo nets were used to determine the distribution of dip angles and to compare the data distribution fur the borehole method versus those for the scanline method.

  • PDF

Bearing Capacity of Shallow Foundation on a Finite Layer of Sandy Ground Underlain by a Rigid Base (강성저면위 유한한 두께의 모래지반에 놓인 얕은기초의 지지력)

  • Jun, Sang-Hyun;Yoo, Nam-Jae;Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.39-48
    • /
    • 2011
  • In this paper the method of estimating the bearing capacity of shallow foundation on a finite layer of sandy ground underlain by a rigid base was proposed by assessing results of the model test and the numerical analyses. For model experiments, the centrifuge tests under 1g and 20 g of gravitational levels were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sand layer (H) to the width of strip footing (B). As results of tests, bearing capacity tends to increase with the value of H/B while settlement for a given load intensity decreases. Bearing capacity also increases with relative density of the soil. In order to propose the method of estimating the bearing capacity of thin sandy layer underlain by a rigid base, values of bearing capacity factors from test results were compared with the values of modified bearing capacity factor by Mandel & Salencon (1972) considering the effect of H/B value on bearing capacity. The relation of bearing capacity factor ratio, normalizing friction angle of sandy soil, with the value of H/B was suggested so that this relation could be applied to design in the safe side. The results of numerical analyses obrained by changing the layout of footing, relative density of sandy soil and the value of H/B, were in good agreements with the suggested relation.