DOI QR코드

DOI QR Code

Evaluation of Thermal Response Test of Energy Pile

에너지 파일의 현장 열응답 시험에 관한 연구

  • Received : 2014.03.12
  • Accepted : 2014.04.07
  • Published : 2014.04.30

Abstract

Use of geothermal energy has been increased for its economical application and environmentally friendly utilization. Particularly, for energy piles, a spiral coil type ground heat exchanger (GHE) is more preferred than line type GHEs such as U and W shaped GHEs. A PHC energy pile with spiral coil type GHE was installed in an area of partially saturated dredged soil deposit, and a thermal response test (TRT) was conducted for 240 hours under a continuous operation condition. Besides, remolded soil samples from different layers were collected in the field, and soil specimens were reconstructed according to the field ground condition. Non-steady state probe methods were conducted in the lab, and ground thermal conductivity and thermal diffusivity were measured for the different soil layers. An equivalent ground thermal conductivity was calculated from the lab test results and it was compared with the field TRT result. The difference was less than 5%, which advocates the use of an equivalent ground thermal conductivity for the multi-layered ground. Furthermore, this paper also represents an equivalent ground thermal diffusivity evaluation method which is another very important design parameter.

최근 들어 경제적인 지열에너지 활용을 위하여 에너지 파일의 적용이 확대되고 있다. 특히 더 높은 열 교환 효율을 확보하고자 에너지 파일의 경우 통상적인 U자형 또는 W자형과 같은 라인형 지중 열교환기가 아닌 코일형 지중 열교환기를 매입하는 경우가 늘어나고 있다. 본 연구에서는 매립지 부지에 PHC 코일형 열교환기 형태의 에너지 파일을 설치하고 240시간 동안 현장 열응답 시험(thermal response test)을 실시하였다. 또한 현장에서 지층별로 시료를 채취하여 실내에서 현장 지층 물성으로 시료를 재조성한 후 비정상 탐침법(non-steady state probe method)을 이용하여 지층별 열전도도와 열확산계수를 측정하였고 등가의 열물성으로 환산하였다. 실험 결과 현장 열응답 시험에 의한 지반의 열전도도와 실내 탐침법으로 측정된 지반의 열전도도는 5%내에서 일치하였으며 아울러 지반의 또 하나의 중요한 설계인자인 등가 열확산계수의 측정방법도 제시하였다.

Keywords

References

  1. Brandl, H. (2006), "Energy foundations and other thermo-active ground structures", Geotechnique, Vol.56, No.2, pp.81-122. https://doi.org/10.1680/geot.2006.56.2.81
  2. Gao, J., Zhang, X., Liu, J., Li, K., and Yang, J. (2008), "Numerical and experimental assessment of thermal performance of vertical energy piles: an application", Applied Energy, Vol.85(10), pp.901-910. https://doi.org/10.1016/j.apenergy.2008.02.010
  3. Go, G. H., Yoon, S., Park, D. W., and Lee, S. R. (2013), "Thermal behavior of energy pile considering ground thermal conductivity and thermal interference between piles", Journal of Korean Society of Civil Engineers, Vol.33, No.6, pp.2381-2391. https://doi.org/10.12652/Ksce.2013.33.6.2381
  4. Johnston, I.W, Narsilio, G.A., and Colls, S. (2011), "Emerging geothermal energy technologies", KSCE Journal of Civil Engineers, Vol.15(4), pp.643-653. https://doi.org/10.1007/s12205-011-0005-7
  5. Jun, L., Xu, Z., Jun, G., and Jie, Y. (2009), "Evaluation of heat exchange rate of GHE in geothermal heat pump systems", Renewable energy, Vol.34, pp.2898-2904. https://doi.org/10.1016/j.renene.2009.04.009
  6. Laloui, L., Nuth, M., and Vulliet, L. (2006), "Experimental and numerical investigations of the behavior of a heat exchanger pile", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.30, pp.763-781. https://doi.org/10.1002/nag.499
  7. Lim, H. J., Kong, H. J., Kang, S. J., and Choi, J. H. (2011), "The effect of the installation condition of ground loop heat exchanger to the thermal conductivity and borehole resistance", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol.23, No.2, pp.95-102. https://doi.org/10.6110/KJACR.2011.23.2.095
  8. Lee, K. (2010), "Study on thermal characteristics of backfill materials for horizontal ground heat exchanger", Master thesis, Korea University.
  9. Lee, C., Park, M., Min, S., Choi, H., and Sohn, B. (2010), "Evaluation of performance of grouts and pipe sections for closed-loop vertical ground heat exchanger by in-situ thermal response test", Journal of Korean Geotechnical Society, Vol.26, No.7, pp.93-106.
  10. Pahud, D. and Matthey, B. (2001), "Comparison of the thermal performance of double U-pipe borehole heat exchangers measured in situ", Energy and Building, Vol.33, pp.503-507. https://doi.org/10.1016/S0378-7788(00)00106-7
  11. Park, H. (2011), "Thermal conductivities of unsaturated Korean weathered granite soils", Master thesis, KAIST.
  12. Park, H., Park. H., Lee, S. R., and Go, G. H. (2012), "Estimation of thermal conductivity of weathered granite soils", Journal of Korean Society of Civil Engineers, Vol.32, No.2C, pp.69-77.
  13. Park, H. K., Lee, S. R., Yoon, S., and Choi, J. C. (2013), "Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation", Applied Energy, Vol.103, pp.12-24. https://doi.org/10.1016/j.apenergy.2012.10.012
  14. Park, S., Sohn, J. R., Park, Y. B., Ryu, H. K., and Choi, H. (2013), "Study on thermal behavior and design method for coil-type PHC energy pile", Journal of Korean Geotechnical Society, Vol.29, No.8, pp.37-51.. https://doi.org/10.7843/kgs.2013.29.8.37
  15. Sohn, B. H., Shin. H. J., and Park, S. K. (2005), "Evaluation of effective thermal conductivity and thermal resistance in ground heat exchanger boreholes", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol.17, No.8, pp.695-703.
  16. Yoon, S., Lee, S. R., Park, H. K., Park, D. W., and Go, G. H. (2013), "Prediction of heat exchange rate in PHC energy piles", Journal of Korean Geotechnical Society, Vol.29, No.9, pp.31-41. https://doi.org/10.7843/kgs.2013.29.9.31
  17. Yoon, S., Lee, S. R., Go, G. H., Jianfeng, X., Park, H., and Park, D. (2014), "Thermal transfer behavior in two types of W-shaped ground heat exchangers installed in multilayer soils", Geomechanics and Engineering, Vol.6, No.1, pp.79-98. https://doi.org/10.12989/gae.2014.6.1.079