• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.023 seconds

The Reliability of SIP Pile in Layered Ground (다층토 지반에서 매입말뚝(SIP)의 신뢰성 연구)

  • 이민선;황의석;이봉열;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.567-574
    • /
    • 2002
  • Rapid urbanization of many cities require large scale constructions such as high rise buildings in difficult ground conditions. SIP(Soil-cement Injected Precast pile) type piles are tile most popular choice of foundation method in soft ground as well as layered ground in many cities in Korea since SIP offer negligible amount of noise and vibration. But SIP method of construction provide wide range of pile capacity depending on the construction method, equipment, ground conditions and quality control method etc. Therefore this paper intend to investigate the reliability of SIP pile in layered ground through a comparison of existing design formulars and SIP pile load test.

  • PDF

A Study on the Skin Friction Characteristics of SIP(Soil-cement Injected Precast Pile) (SIP 말뚝의 주면마찰 특성에 관한 연구)

  • 천병식;임해식;강재모;김도형;지원백
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.583-588
    • /
    • 2002
  • As environmental problem in course of construction has been a matter of interest, noise and vibration in the process of piling are considered as a serious problem. For this reason, the use of SIP method inserting pile as soon as boring and cement grouting is rapidly increasing for preventing vibration and noise. But a resonable bearing capacity formula for SIP method does not exit and even the standard specification for domestic condition isn't formed, though the lateral friction between cement paste and the ground does an important role and boring depth largely influences to the design bearing capacity, applying the SIP method . Therefore, the lateral friction was analyzed after the direct shear test worked with the lateral face of SIP and the soil.

  • PDF

한강 하저터널에서의 암반분류 및 평가사례

  • 박남서;이치문;김은섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06b
    • /
    • pp.165-193
    • /
    • 2003
  • The Han River tunnel connecting Yoido and Mapo was constructed as a part of the Seoul subway line No.5, which is 52 km long, to improve the traffic conditions of Seoul. It is constructed 15.6∼30m below the river floor. It Is the first under-river tunnel in Korea with the length of 1,288m. Geological conditions of the ground under the Han River were more complex and irregular than expected at the design stage, because there were several faults, fracture zones and slickensided joints coated with graphite. It was thus indispensable to estimate the ground condition of the tunnel face to apply proper excavation and reinforcement methods. Advance borings and face mappings were performed before excavation to improve constructional efficiency and excavation stability.

  • PDF

An Experimental Study on Behavior Characteristic of the Soil Nailed Wall with Facing Stillness (전면벽체 강성에 따른 쏘일네일링 벽체의 거동특성에 관한 실험적 고찰)

  • 김홍택;강인규;권영호;조용훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.279-286
    • /
    • 2002
  • Recently, there are many attempts to expand a temporary soil nailing system into a permanent wall due to the advantage of soil nailing system, that is efficient and economic use of underground space and decreasing the total construction cost. However, the proper design approach of a permanent soil nailing system has not been proposed by now in Korea. Permanent soil nailing system which utilizes precast concrete walls for the facing of soil nailing system Is already used in many countries. In general, the cast-in-place concrete facings or rigid walls were constructed in bottom-up way after construction of soil nailing walls finished preliminarily In this paper, various laboratory model tests have been carried out to investigate the failure mode, behavior characteristics, and tensile force at nail head in each load level in respects of the variation of stiffness of the facing.

  • PDF

Modification of Design Response Spectra Considering Geotechnical Site Characteristics in Korea (국내 지반특성에 적합한 설계응답스펙트럼 개선을 위한 증폭계수 재산정에 대한 연구)

  • Yoon, Jong-Ku;Kim, Dong-Soo;Bang, Eun-Seok
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.113-124
    • /
    • 2006
  • Despite the site classification method was improved in the previous study, the response spectrum would be required to be modified by adjusting the integration interval to calculate the site coefficients because the response spectra did not match well the average spectral accelerations obtained by site response analyses in the range of long periods. In this paper, new response spectra for each site categories were determined by adjusting the integration interval of long-period site coefficient $F_{v}$ from $0.4{\sim}2.0$ to $0.4{\sim}1.5$ second. It matched well the average spectral accelerations and new response spectrum, and it was also improved compared to the current site classification system.

  • PDF

3D stability of shallow cavity roof with arbitrary profile under influence of pore water pressure

  • Luo, W.J.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.569-575
    • /
    • 2018
  • The stability of shallow cavities with an arbitrary profile is a difficult issue in geotechnical engineering. This paper investigates this problem on the basis of the upper bound theorem of limit analysis and the Hoek-Brown failure criterion. The influence of pore pressure is taken into consideration by regarding it as an external force acting on rock skeleton. An objective function is constructed by equating the internal energy dissipation to the external force work. Then the Lagrange variation approach is used to solve this function. The validity of the proposed method is demonstrated by comparing the analytical solutions with the published research. The relations between shallow and deep cavity are revealed as well. The detaching curve of cavity roof with elliptical profile is obtained. In order to facilitate the application of engineering practice, the numerical results are tabulated, which play an important role in tunnel design and stability analysis of roof. The influential factors on potential collapse are taken into consideration. From the results, the impact of various factors on the extent of detaching is seen intuitively.

Application of Geophysical Methods to Cavity Detection at the Ground Subsidence Area in Karst (물리탐사 기술의 석회암 지반침하 지역 공동탐지 적용성 연구)

  • Kim, Chang-Ryol;Kim, Jung-Ho;Park, Sam-Gyu;Park, Young-Soo;Yi, Myeong-Jong;Son, Jeong-Sul;Rim, Heong-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.271-278
    • /
    • 2006
  • Investigations of underground cavities are required to provide useful information for the reinforcement design and monitoring of the ground subsidence areas. It is, therefore, necessary to develop integrated geophysical techniques incorporating different geophysical methods in order to accurately image and to map underground cavities in the ground subsidence areas. In this study, we conducted geophysical investigations for development of integrated geophysical techniques to detect underground cavities at the field test site in the ground subsidence area, located at Yongweol-ri, Muan-eup, Muan-gun, Jeollanam-do. We examined the applicability of geophysical methods such as electrical resistivity, electromagnetic, and microgravity to cavity detection with the aid of borehole survey results. The underground cavities are widely present within the limestone bedrock overlain by the alluvial deposits in the test site where the ground subsidences have occurred in the past. The limestone cavities are mostly filled with groundwater or clays saturated with water in the site. The cavities, thus, have low electrical resistivity and density compared to the surrounding host bedrock. The results of the study have shown that the zones of low resistivity and density correspond to the zones of the cavities identified in the boreholes at the site, and that the geophysical methods used are very effective to detect the underground cavities. Furthermore, we could map the distribution of cavities more precisely with the study results incorporated from the various geophysical methods. It is also important to notice that the microgravity method, which has rarely used in Korea, is a very promising tool to detect underground cavities.

A Case Study on Soft Soil Treatment Design and Construction in Vietnam (베트남지역에서의 연약지반 개량 설계.시공 사례)

  • Yoon, Dong-Duk;Cho, Sung-Han;Seo, Won-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.336-345
    • /
    • 2010
  • GS E&C was awarded the contract for the construction of Hanoi - Hai Phong Expressway Package EX-7 from Station Km 72+000 to Station Km 81+300 in December 2008. This project is the $7^{th}$ contract package of the 105.5 km long expressway near Hai Phong city, which includes a FCM-styled bridge along with high embankments over soft ground. For these high embankments, there is a need to treat the soft soil for improving the overall stability during construction and for reducing the post-construction settlement of the expressway. The Designer of this project had adopted four (4) different types of ground improvement techniques to treat the soft ground, including the prefabricated vertical drains (PVD), sand drains (SD), pack drains (PD, or sometimes called packed sand drains), and sand compaction piles (SCP). The main focus of soft soil treatment should be paid attention to the residual settlement after construction. In current design, however, it appeared that the secondary compression (or creep) of the improved soil layer and the consolidation settlement of the lower untreated compressible soil layer have been neglected in the estimation of the post-construction settlement. These uncalculated residual settlements may not only unsatisfy the design criteria but also raise serious problems during service period of this expressway. In this paper, the subsoil condition and current design were reviewed focusing on the employed soft soil treatment method and expected residual settlement.

  • PDF

Soft Sedimentary Rock Slopes Design of Diversion Tunnel

  • Jee, Warren Wangryul
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.10a
    • /
    • pp.63-79
    • /
    • 2007
  • Several remedial works were attempted to stabilize the collapsed area of the inlet slopes of diversion tunnel, but prevention of any further movement was being only carried out at beginning stage by filling the area with aggregates and rock debris, after several cracks had been initiated and developed around the area. The extra specialty developed folding zone is consisted with highly weathered Greywacke and Black shale. The suggested solution is to improve the properties of the rock mass of failed area by choosing the optimum level of reinforcement through the increment of slope rock support design so as to control the movement of slopes during the re-excavation. The Bakun hydroelectric project includes the construction of a hydroelectric power plant with an installed capacity of 2,520MW and a power transmission system connecting to the existing transmission networks in Sarawak and Western Malaysia. The power station will consist of a 210m height Concrete Faced Rockfill Dam. During the construction of the dam and the power facilities the Balui River has to be diverted of the tunnels is 12m and the tunnel width is 16m at the portal area. This paper describes the stability analysis and design methods for the open cut rock slopes in the inlet area of the diversion tunnels. The geotechnical parameters employed in stability calculations were given as a function of four defined Rock Mass Type (RMT) which were based on RMR system from Bieniawski. The stability calculations procedure of the rock slopes are divided into two stages. In the first stage, it is calculated for the stability of each "global" slope without any rock support and shotcrete system. In the second stage, it is calculated for each "local" slope stability with berms and supported with rock bolts and shotcrete. The monitoring instrumentation was performed continuously and some of the design modification was carried out in order to increase the safety of failed area based on the unforeseen geological risks during the open cut excavation.

  • PDF

A Case Study of a Foundation Design and Construction of a High-rise Building Applying Bi-directional Pile Load Test(BD PLT) (양방향 말뚝재하시험(BD PLT)을 적용한 초고층 건축구조물의 기초설계 및 시공사례)

  • Kim, Sung-Ho;Lee, Min-Hee;Hwang, Geun-Bae;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.539-550
    • /
    • 2006
  • New Songdo city is currently developing on the reclaimed land on a marine deposit and among the development the four sixty-four(64) stories high rise buildings are under construction at block 125. The ground condition of the site is comprised of a deep seated weathered rock staratum under a soft marine deposit layer. As a foundation system, a bored pile was planned to transmit the applied load to the stable layer. In this study, the behavior of the weathered rock especially locating at a upper part having a weak strength(HWR, MWR) has been evaluated through series of hi-directional pile load test(BD PLT) carried out on the 3 drilled shafts socketed in a weathered rock layer in a design stage. It has been planned to increase the effect of the tests that the length of test piles was prepared short enough to perform the test under a high stress. The summary of the design reflecting the test results has been made up. In addition, the 4 hi-directional pile tests excuted on the working piles during the construction stage for the purpose of confirmation and the evaluation of the adequacy of the pile behaviors have been included in this study.

  • PDF