• Title/Summary/Keyword: geotechnical behavior

Search Result 1,589, Processing Time 0.025 seconds

Long -Term Settlement Behavior of Landfills with Consideration of Refuse Decomposition (분해가 고려된 쓰레기 매립지의 장기 침하 거동)

  • Park, Hyeon-Il;Lee, Seung-Rae;Go, Gwang-Hun
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.5-14
    • /
    • 1998
  • In refuse landfill, long-term settlement is considerably dependent upon the biological decomposition of refuse which is distinguished from typical soil behavior. Two equations are combined in order to model long-term settlement behavior of refuse landfill caused by mechanical secondary compression and secondary compression caused by the decomposition of biolegradable refuse. It is suggested that mechanical secondary compression is linear with respcet to the logarithm of time. In order to estimate the settlement that occurs due. to the decomposition of biodegradable refuse, a mathematical model is used which theoretically conoiders the decomposition process related to the solubilization stage of biodegradable refuse solid. This model is based on hydrolysis process and expressed as first order kinetics. The proposed model is applied to Lysimeter compression data of an old refuse. This paper intends to propose the simplest mathematical model which effectively represents settlement caused by the solubilization stage of biodegradable refuse solid on decomposition process.

  • PDF

Evaluation of Rocking Behaviors During Earthquake for the Shallow Foundation System on the Weathered Soil Using Dynamic Centrifuge Test (동적 원심모형실험을 이용한 풍화토 지반에 놓인 얕은기초 시스템의 지진 시 회전 거동 특성 평가)

  • Ha, Jeong-Gon;Jo, Seong-Bae;Park, Heon-Joon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.5-16
    • /
    • 2017
  • Rocking behavior of shallow foundation during the earthquake can reduce the seismic load of the superstructure. The dynamic centrifuge tests were performed to investigate the availability of using rocking behavior for the weathered soil condition. The centrifuge test model was composed of the weathered soil, shallow foundation and single degree of freedom structure. And the accelerations of soil, foundation and structure, and the foundation settlement were measured during the earthquake. From the test result, the seismic load of the structure for the strong earthquake input was reduced by the rocking behavior with foundation uplift and the maximum foundation settlement was less than 0.5% of the foundation width. This shows the potential that the rocking foundation concept can be used in the economical seismic design of foundation for the weathered soil in the future with additional research and verification.

The Stress -Strain Behavior of Sand in Torsion Shear Tests (비틀림전단시험에 의한 모래의 응력 -변형률 거동)

  • 남정만;홍원표
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.65-82
    • /
    • 1993
  • A series of torsion shear tests were performed to study the drained stress -strain behavior of medium dense Santa Monica Beach sand under various stress paths. The torque was applied to both clockwise and counterclockwise directions at the end of hollow cylinder specimen. Two clip gages had been previously used to measure the changes in wall thickness and diameter of the specimen. In this study, however, the lateral strain was determined by measuring volume changes in specimen. Specimens were prepared by the air pluviation method and gaseous carbon deozide( CO2) was used to measure precisely volumetric strain in specimen. The drained stress -strain behavior of cohesionless Boils during rotation of principal stress directions was analysed based on the results of torsion shear tests. The coupling of mal stress were applied. It was also found from the test results that the atrial strain at failure decreased with increasing value.

  • PDF

The Behavior of a Cut Slope Stabilized by Use of Piles (억지말뚝으로 보강된 절개사면의 거동)

  • Hong, Won-Pyo;Han, Jung-Geun;Lee, Mun-Gu
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.111-124
    • /
    • 1995
  • On development of mountaneous or hilly area, stability of cut slope should be provided to prevent undesirable landslides. When piles are used as a countermeasure to stabilize existing landslide, stabilities for both piles and slope should be simultaneously satisfied to obtain the whole stability of the slope reinforced by piles. In order to confirm the effect of stabilizing piles on slope stabilization, it is necessary to investigate the behavior of the slope, in which the piles are installed. In this paper, first, the countermeasures used commonly to control unstable slope in Korea were summerized systematically. Nezt, the behavior of piles and slope soil was investigated by instrumentation installed into a cut slope for an apartment stabilized by a row of piles. Instrumentation could present sufficient effect of piles on slope stabilization Construction works in front of the row of piles affected the displacement of piles and slope. The construction works were divided into four stages, i.e. initial cutting stage of slope, excavation stages for retaining wall and parking space, and construction of retaining wall. As the result of research, the applicability of the proposed design method could be confirmed sufficiently.

  • PDF

The Development of Tunnel Behavior Prediction System Using Artificial Neural Network (인공신경망을 이용한 터널 거동 예측 시스템 개발)

  • 이종구;문홍득;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.267-278
    • /
    • 2003
  • Artificial neural networks are efficient computing techniques that are widely used to solve complex problems in many fields. In this study, in order to predict tunnel-induced ground movements, Tunnel Behavior Prediction System (TBPS) was developed by using these artificial neural networks model, based on a Held instrumentation database (i.e. crown settlement, convergence, axial force of rock bolt, compressive and shear stress of shotcrete, stress of concrete lining etc.) obtained from 193 location data of 31 different tunnel sites where works are completed. The study and test of the network were performed by Back Propagation Algorithm which is known as a systematic technique for studying the multi-layer artificial neural network. The tunnel behaviors predicted by TBPS were compared with monitored data in the tunnel sites and numerical analysis results. This study showed that the values obtained from TBPS were within allowable limits. It is concluded that this system can effectively estimate the tunnel ground movements and can also be used f3r tunneling feasibility study, and basic and detailed design and construction of tunnel.

A Study on the 3D Analysis of Debris Flow Based on Large Deformation Technique (Coupled Eulerian-Lagrangian) (대변형 해석기법(Coupled Eulerian-Lagrangian)을 이용한 3차원 토석류 거동분석)

  • Jeong, Sang-Seom;Lee, Kwang-Woo;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.45-57
    • /
    • 2015
  • This paper presents the application of the Coupled Eulerian-Lagrangian (CEL) technique to simulate the debris flow. The main objective of this study is to investigate the applicability of CEL technique to the behavior of debris flow, such as flow velocity and influence area. Comprehensive studies to verify the behavior of debris flow are presented in this study. Through comparison with measured flow velocity from Umyeonsan (Mt.), CEL approach was found to be in good agreement with the general trend observed by in actual debris flow. In addition, CEL technique accurately simulated the behavior of debris flows, therefore, it can be used for designing the countermeasure structure.

Dynamic Shear Behavior of the Ground-geosynthetics Interface in the Waste Landfill (폐기물 매립장 지반-토목섬유 접촉면의 동적 전단거동 특성)

  • Jang, Dong-In;Kim, Young-Jun;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.5-12
    • /
    • 2015
  • The construction of waste landfill sites has been increased due to recent expansion of various waste. Geotextiles are widely used for the purpose of reinforcement and protection of waste inside the landfill. Geotextile affects the shear behavior of waste landfill which forms the contact surface with soil. In this study, the effect of acidic and alkaline components in leachate has been analyzed through the laboratory experiment on the shear stress reduction of the contact surface of ground-geotextile under the cyclic load. For this purpose, a dynamic contact surface shear tester has been manufactured, and cyclic simple shear tests have been performed using geotextile and soil specimen which were immersed in chemical solutions for 60 and 840 days, respectively. Based on the Disturbed State Concept, the characteristics of shear stress on the contact surface of ground-geotextile due to chemical factors have been identified by the disturbance function.

Constitutive Model for Unsaturated Soils Based on the Effective Stress (유효응력에 근거한 불포화토의 역학적 구성모델)

  • Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.55-69
    • /
    • 2011
  • The importance of unsaturated state in various geo-engineering problems has led to the advance of mechanical constitutive model emulating behavior of unsaturated soils in response to thermo-hydro-mechanical loading. Elasto-plastic mechanical constitutive model for unsaturated soil is formulated based on Bishop's effective stress. Effective stress and temperature are main variables in constitutive equation, and incremental formulation of constitutive relationship is derived to compute stress update and stiffness tensor. Numerical simulations involving coupled THM processes are conducted to discuss numerical stability and applicability of developed constitutive model: one-dimensional test, tri-axial compression test, and clay-buffering at high level radioactive waste disposal. Numerical results demonstrated that developed model can predict very complex behavior of coupled THM phenomena and is applicable to geo-engineering problems under various environmental conditions, as well as interpret typical behavior of unsaturated soils.

Influence of Saturation and Soil Density on the Ground Subsidence Using Distinct Element Method (개별요소법을 통한 지반의 포화도와 밀도가 함몰에 미치는 영향 평가)

  • Kim, Yeonho;Kim, Hyunbin;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.27-36
    • /
    • 2018
  • The collapse behavior of ground subsidence caused by continuous loss of particles depends on the saturated condition and density of the ground. In this study, types of ground subsidence were classified based on the saturated condition and each type was performed on the different relative density to analyze the influence factors on the collapse behavior by distinct element method. According to analysis results, the relatively small amount of settlement occurred on the dense ground and a cavity was created under dense-unsaturated ground. In contrast, loose ground showed the large amount of settlement and collapsed immediately without cavity formation even if the unsaturated ground was simulated. The results demonstrated that because the relative density has influence on the mechanical interlocking and saturated condition has influence on the inter-particle force, these are important factors to change the collapse behavior.

Numerical Analysis on Consolidation of Soft Clay by Sand Drain with Heat Injection (수치해석을 통한 샌드드레인과 열주입에 의한 연약지반의 압밀 해석)

  • Koy, Channarith;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.45-57
    • /
    • 2017
  • Temperature change affects consolidation behavior of soft clays. The increase of temperature in soft clays induces the increase of pore water pressure. The dissipation of the excess pore water pressure decreases volume and void ratio. Also, the consolidation rate is accelerated by high temperature which induces the decrease of viscosity of pore fluid. The effects of temperature on the consolidation behavior such as consolidation settlement, consolidation time, and pore water pressure were investigated in this study. A numerical analysis of hydro-mechanical (HM) and thermo-hydro-mechanical (THM) behavior was performed. The combination of heat injection and sand drain for consolidating the soft ground, with varying temperature (40 and $60^{\circ}C$) and sand drain diameter (40, 60, and 80 mm), was considered. The results show that the temperature inside soil specimen increases with the increase of the temperature of heating source and the diameter of sand drain. Moreover, the heat injection increases the excess pore water pressure and, accordingly, induces additional settlement in overconsolidated (OC) state and reduces the consolidation time in normally consolidated (NC) state.