DOI QR코드

DOI QR Code

A Study on the 3D Analysis of Debris Flow Based on Large Deformation Technique (Coupled Eulerian-Lagrangian)

대변형 해석기법(Coupled Eulerian-Lagrangian)을 이용한 3차원 토석류 거동분석

  • 정상섬 (연세대학교 토목환경공학과) ;
  • 이광우 (연세대학교 토목환경공학과) ;
  • 고준영 (연세대학교 토목환경공학과)
  • Received : 2015.09.25
  • Accepted : 2015.12.21
  • Published : 2015.12.31

Abstract

This paper presents the application of the Coupled Eulerian-Lagrangian (CEL) technique to simulate the debris flow. The main objective of this study is to investigate the applicability of CEL technique to the behavior of debris flow, such as flow velocity and influence area. Comprehensive studies to verify the behavior of debris flow are presented in this study. Through comparison with measured flow velocity from Umyeonsan (Mt.), CEL approach was found to be in good agreement with the general trend observed by in actual debris flow. In addition, CEL technique accurately simulated the behavior of debris flows, therefore, it can be used for designing the countermeasure structure.

본 연구에서는 토석류의 유하부 도달 속도 및 피해 영향범위 등의 흐름 특성을 파악하기 위하여 대변형 3차원 유한요소 해석을 수행하였다. 대변형 해석은 ABAQUS (Ver 6.13, 2013)의 Coupled Eulerian-Lagrangian (CEL) 기법을 이용하였으며, 실제 토석류 발생 지역의 관측 값과 해석 결과를 비교함으로써 CEL 대변형 해석기법의 타당성을 검증하였다. 그 결과, CEL 대변형 해석기법은 토석류 거동을 합리적으로 예측 할 수 있음을 확인하였다. 또한 토석류의 흐름에 사방댐이 미치는 영향을 확인하기 위하여 추가적인 해석을 수행하여 분석하였다. 그 결과, 사방댐에 의해 유하부로 흘러 내려오는 토석류의 속도와 체적의 감소효과를 확인하였고 토석류에 의해 발생하는 충격력을 산정하였다. 이로 인하여 대변형 토석류 해석기법은 기존 사방댐 안정성 평가 및 사방댐 설계에 활용이 가능할 것으로 판단된다.

Keywords

References

  1. ABAQUS. (2013), ABAQUS user's and theory manuals, Version 6.13. rhode island: Hibbitt, Karlsson & Sorensen, Inc.
  2. Borja, R.I. and White, J.A. (2010), "Continuum Deformation and Stability Analyses of a Steep Hillside Slope under Rainfall Infiltration", Acta Geotechnica, Vol.5, pp.1-14. https://doi.org/10.1007/s11440-009-0108-1
  3. Che, B. G., Cho, Y. C., and Song, Y. S. (2008), "The Current States of Debris Flow Hazards and Suggestion of Damage", Proceedings of Korean Geotechnical Society, Gwangju, Korea, pp.302-331.
  4. Hunger, O. and Morgenstern, N.R. (1984), "High Velocity Ring Sheartests on Sand", Geotechnique, Vol.34 No.3, pp.415-421. https://doi.org/10.1680/geot.1984.34.3.415
  5. Imran, J., Harff, P., and Parker, G. (2001), "A Numerical Model of Submarine Debris Flow with Graphical User Interface", Computers & Geosciences, Vol.27, No.6, pp.717-729. https://doi.org/10.1016/S0098-3004(00)00124-2
  6. Iverson, R.M. (2003), "The Debris-flow Rheology Myth", In Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, pp.303-314. Millpress, Rotterdam.
  7. Jeong, S.W., Locat, J., Leroueil, S., and Malet, J. P. (2010), "Rheological Properties of Fine-Grained Sediments: the Roles of Texture and Mineralogy", Can. Geotech. J., Vol.47, pp.1011-1023. https://doi.org/10.1139/T10-005
  8. Jeong, S. S., Kim, J. H., Kim, Y. M., and Bae, D. H. (2014), "Susceptibility Assessment of Landslides under Extreme-rainfall Events Using Hydro-geotechnical Model; A Case Study of Umyeonsan (Mt.), Korea", Nat. Hazards Earth Syst. Sci. Discuss., Vol.2, pp. 5575-5601. https://doi.org/10.5194/nhessd-2-5575-2014
  9. Julien, P. Y. and O'Brien, J. S. (1997), "Selected Notes on Debris Flow Dynamics, Recent Developments on Debris Flows", Lecture note in earth sciences, Springer, Berlin, pp.144-162.
  10. Kim, J. H., Jeong, S. S., and Regueiro, R. A. (2012), "Instability of Partially Saturated Soil Slopes due to Alteration of Rainfall Patten", Engineering Geology, Vol.147, pp.28-36.
  11. Kim, J., Jeong, S., and Kim, K. (2014), "GIS-based Prediction Method of Landslide Susceptibility Using a Rainfall Infiltration groundwater Flow Model", Engineering Geology, Vol.182, pp.63-78. https://doi.org/10.1016/j.enggeo.2014.09.001
  12. Kim, S. E., Paik, J. C., and Kim, K. S. (2013), "Run-out Model of Debris Flows in Mt. Umyeon Using FLO-2D", Journal of the Korean Society of Civil Engineers, Vol.33, No.3, pp.965-974. https://doi.org/10.12652/Ksce.2013.33.3.965
  13. Kim, S. K. and Seo, H. S. (1997), "Rheological Characteristic of Debris Flow", Journal of the Korean Geotechnical Society, Vol.13, No.5, pp.125-131.
  14. Kim, Y. H. and Jeong, S. S. (2014), "Analysis of Dynamically Penetrating Anchor based on Coupled Eulerian-Lagrangian (CEL) Methods", Journal of the Korean Society of Civil Engineers, Vol.34, No.3, pp.895-906. https://doi.org/10.12652/Ksce.2014.34.3.0895
  15. Ko, J. Y., Jeong, S. S., and Lee, S. Y. (2015), "A Study on the 3D Analysis of Deiven Pile Penetration Based on Coupled Eulerian-Lagrangian (CEL) Methods", Journal of the Korean Geotechnical Socity, Vol.31, No.8, pp.29-38.
  16. Lee, M. J. and Kim, Y. T. (2013), "Movement and Deposition Characteristics of Debis Flow According to Rheological Factors", Journal of the Korean Geotechnical Socity, Vol.29, No.5, pp.19-27.
  17. Lin, P.-S., Lee, J.-H., and Chang, C.. W. (2011), "An Application of the FLO-2D Model to Debris-flow Simulation a Case of SONGHER District in TAIWAN", Proc. of 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, pp.947-956.
  18. Liu, K. F. and Huang, M. C. (2006), "Numerical Simulation of Debris Flow with Application on Hazard Area Mapping," Computational Geosciences, Vol.10, pp.221-240. https://doi.org/10.1007/s10596-005-9020-4
  19. O'Brien, J. S. and Julien, P. Y. (1985), "Physical Properties and Mechanics of Hyper-concentrated Sediment Flows", Proceedings of the Specialty Conference on Delineation of Landslide, Flash Flood and Debris Flow Hazard in Utah, Utah State University, Utah, pp.260-279.
  20. Paik, J. (2011), "Run-out Analysis of Debris Flows on July 2011 in Mt. Umyeon." Proc. of 37th Annual Conference of Korean Society of Civil Engineers, KINTEX, Goyang-si, Korea (in Korean).
  21. Pierson, T. C. (1986), "Flow Behavior of Channelized Debris Flows", Mount St. Helens. Washington. In A. D. Abrahams (ed). Hillslope Processes: 269-296.
  22. Qiu, G., Henke, S., and Grabe J. (2011), "Application of a Coupled Eulerian-Lagrangian Approach on Geomechanical Problems Involving Large Deformations", Computers and Geotechnics, Vol.38, pp.30-39. https://doi.org/10.1016/j.compgeo.2010.09.002
  23. Rahardjo, H., Ong, T., Rezaur, R., and Leong, E. C. (2007), "Factors Controlling Instability of Homogeneous Soil Slopes under Rainfall", Journal of Geotechnical and Geoenvironmental Engineering, Vol.133, No.12, pp.1532-1543. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1532)
  24. Takahashi, T. (2007), Debris flow: Mechanics, Prediction and Countermeasures, Taylor & Francis Group, London, UK.
  25. Wang, D., Hu, Y., and Randolph, M. F. (2010), "Three-dimensional Large Deformation Finite-element Analysis of Plate Anchors in Uniform Clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, No.2, pp.355-365. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000210
  26. WSL Institute for Snow and A valanche Research SLF. 2011. RAMMS User Manual v1.5 Debris Flow. WSL Institute for Snow and A valanche Research SLF.
  27. Yu, B. O., Chang, B. S., Choi, S. I., Choi, Y. K., and Lee, J. H. (2006), "Debris Flow Case Study and Remediation in Kangwon Province", The Korean Society for Railway, pp.407-410.
  28. Zhu, H. and Randolph, M. (2010), "Large Deformation Finite-Element Analysis of Submarine Landslide Interaction with Embedded Pipelines", International Journal of Geomechanics, Vol.10, pp.145-152. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000054

Cited by

  1. Application of a Coupled Eulerian-Lagrangian Technique on Constructability Problems of Site on Very Soft Soil vol.7, pp.10, 2017, https://doi.org/10.3390/app7101080