• Title/Summary/Keyword: geotechnical behavior

Search Result 1,589, Processing Time 0.028 seconds

Prediction of Settlement of Vertical Drainage-Reinforced Soft Clay Ground using Back-Analysis (역해석 기법에 근거한 수직배수재로 개량된 연약점토지반의 침하예측)

  • Park, Hyun-Il;Kim, Yun-Tae;Hwang, Dae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.417-424
    • /
    • 2005
  • Observed field behaviors are frequently different from the behaviors predicted in the design state due to several uncertainties involved in soil properties, numerical modelling, and error of measuring system even though a sophisticated numerical analysis technique is applied to solve the consolidation behavior of drainage-installed soft deposits. In this study, genetic algorithms are applied to back-analyze the soil properties using the observed behavior of soft clay deposit composed of multi layers that shows complex consolidation characteristics. Utilizing the program, one might be able to appropriately predict the subsequent consolidation behavior from the measured data in an early stage of consolidation of multi layered soft deposits. Example analyses for drainage-installed multi-layered soft deposits are performed to examine the applicability of proposed back-analysis method.

  • PDF

Experimental studies on composite beams with high-strength steel and concrete

  • Zhao, Huiling;Yuan, Yong
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.373-383
    • /
    • 2010
  • This paper presents the experimental studies of the flexural behavior of steel-concrete composite beams. Herein, steel-concrete composite beams were constructed with a welded steel I section beam and concrete slab with different material strength. Four simply supported composite beams subjected to two-point concentrated loads were tested and compared to investigate the effect of high strength engineering materials on the overall flexural response, including failure modes, load deflection behavior, strain response and interface slip. The experimental results show that the moment capacity of composite beams has been improved effectively when high-strength steel and concrete are used. Comparisons of the ultimate flexural strength of beams tested are then made with the calculated results according to the methods specified in guideline Eurocode 4. The ultimate flexural strength based on current codes may be slightly unconservative for predicating the moment capacity of composite beams with high-strength steel or concrete.

Behavior of deep excavation system supported by steel pipe struts (강관버팀보 적용 흙막이 시스템 거동 특성)

  • Yoo, Chung-Sik;Na, Seung-Min;Lee, Jong-Goo;Kang, Dong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.811-818
    • /
    • 2010
  • This paper presents the results of a numerical investigation on behavior of deep excavation wall system supported by steel pipe struts. A series of three-dimensional finite element analyses were carried out on a deep excavation project site which adopted steel pipe struts. The results indicated that the mechanical behavior of steel pipe supported deep excavation is comparable to that of a conventional H-pile supported deep excavation, although the steel pipe supported system is required less number of struts than the conventional H-pile strut system. Also shown is that the sectional stresses of the steel pipe support system are within the allowable values implying that the steel pipe support system can be effectively used as an alternative to conventional H-pile support system.

  • PDF

The Shear Behavior of Composite Material for Retaining Wall (옹벽구조물용 복합재료의 전단거동 특성)

  • Oh, Gi-Dae;Kim, Kyung-Yul;Kim, Dae-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1359-1364
    • /
    • 2008
  • In these days, the composite material is popular as a material of Retaining wall because of the advantages of economy and construction. In general, retaining wall is not estimated for the stability of structure, but some of retaining walls that are composed of composite materials became thin because of the highly dense materials. So the concern of shear failure for the structure is rising. Because standard test criterion and large scale tests equipment are rarely available, few studies are performed. So, in this study, we performed large scale direct shear tests for various confining stresses(147, 294, 441 kPa), and estimate shear behavior of composite material by the relation of shear stress - displacement and vertical - shear displacement.

  • PDF

A Study on Prediction of the Liquefaction Behavior of Saturated Sandy Soils Using DSC Constitutive Equation (DSC구성방정식을 이용한 포화사질토의 액상화 거동 예측)

  • 박인준;김수일;정철민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.201-208
    • /
    • 2000
  • In this study, the behavior of saturated sandy soils under dynamic loads - pore water pressure and effective stress - was investigated using Disturbed State Concept(DSC) model. The model parameters are evaluated from laboratory test data. During the process of loading and reverse loading, DSC model is utilized to trace strain-hardening and cyclic softening behavior. The procedure of back prediction proposed in this study are verified by comparing with laboratory test results. From the back prediction of pore water pressure and effective mean pressure under cyclic loading, excess pore water pressure increases up to initial effective confining pressure and effective mean pressure decrease close to zero in good greement with laboratory test results. Those results represent the liquefaction of saturated sandy soils under dynamic loads. The number of cycles at initial liquefaction using the model prediction is in good agreement with laboratory test results. Therefore, the results of this study state that the liquefaction of saturated sandy soils can be explained by the effective tress analysis.

  • PDF

A Study on the Behavior of the Steel Retaining Wall (강재틀 옹벽 거동에 관한 연구)

  • Kim, Seung-Hwan;Lee, Yeong-Saeng;Cho, Woo-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.569-574
    • /
    • 2005
  • The steel retaining wall(s.r.w) are not constructed broadly all over the world. So the method of the analysis and the estimation for the behavior of the s.r.w. the interactive behavior of the frame and the fill material. In this study, the numerical analysis using F.E.M. was made to analize the mutural relation of the frame and the fill material in prior to the s.r.w. model test.

  • PDF

Laboratory investigation on deep excavation-induced ground movements (축소모형실험을 이용한 지반굴착시 주변 지반 거동 연구)

  • Yoo, Chung-Sik;Lee, Soung-Woo;Lee, Bong-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1476-1483
    • /
    • 2005
  • This paper presents the results of small scale model tests on the behavior of propped wall and ground movements during deep excavation. Small scale model tests were performed in order to investigate the effects of various influencing factors on the deep excavation, such as stiffness of ground and unsupported span length. The results of model tests indicated that the wall behavior is significantly influenced not only by the stiffness of ground but by the over-excavation, and that the wall behavior can be reduced by decreasing the unsupported span length and increasing the stiffness of ground.

  • PDF

Numerical simulation of the behavior of failing rock blocks (암블록 낙석 거동에 대한 수치해석적 모사)

  • Kim, Soo-Lo;Chang, Buhm-Soo;Shin, Chang-Gun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.751-758
    • /
    • 2005
  • In this study, the Discrete Element Code was applied to the analysis of falling rock blocks. The simulation was performed using the PFC2D computer code. Falling rock blocks should be applied as additional force to each others. The force affect the motion of falling rock blocks. This was used to find out the behavior of each blocks. This study revealed that the DEM can successfully capture the behavior of falling rock blocks.

  • PDF

A Study on the Bearing Capacity characteristics of Stone column by Numerical Analysis (수치해석에 의한 쇄석말뚝의 지지력 특성 고찰)

  • Chun, Byung-Sik;Kim, Baek-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.90-99
    • /
    • 2004
  • Stone column is one of the soft ground improvement method, which enhances ground conditions through ground water draining, settlement reducing and bearing capacity increasing complexly by using crushed stone instead of sand in general vertical drain methods. In recent, general construction material, sand is in short of supply, because of the unbalance of demand and supply. Also, the bearing capacity improving effect of stone column method is needed in many cases so the bearing capacity estimation is considered as important point. Nevertheless, adequate estimation methods to predict bearing capacity of stone column considering stone column and improving ground behavior reciprocally is not yet prepared. To contribute this situation, bearing capacity behavior of stone column were simulated as numerically on various property cases of crushed stone and surrounded ground. Through the numerical analysis of simulation results, bearing capacity behavior prediction formula was suggested. This formula was verified by comparing the prediction result with in situ test.

  • PDF

Post-Cyclic Deformation Behavior of Non-Liquefied Weathered Soils (반복재하후 미액상화 풍화토 지반의 변형 거동)

  • 최연수;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.485-492
    • /
    • 2001
  • Weathered soil is one of the most representative soils in Korea. In this study, a series of cyclic triaxial tests was carried out to predict the post-cyclic deformation behavior of weathered soils in case of non-liquefaction. Excess pore pressure response during cyclic loading and volumetric strain during the dissipation of excess pore pressure were measured varying the confining pressure, relative density and cyclic stress ratio. Based on the test results, it Is found that the modified excess pore pressure ratio, excess pore pressure ratio normalized by cyclic stress ratio, is uniquely correlated with the number of cycles irrespective of confining pressure and cyclic stress ratio. Using the newly proposed MEPPR(modified excess pore pressure ratio) concept, it is possible to easily evaluate the excess pore pressure and the settlement of weathered soils due to cyclic loading by greatly reduced number of tests. It is also verified that the reconsolidation volumetric strain is independent of the way how the excess pore pressure was generated.

  • PDF