• Title/Summary/Keyword: geospatial technology

Search Result 353, Processing Time 0.029 seconds

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.

A Study on Accuracy Evaluation and Accuracy Improvement in Cadastral Re-survey Surveying Method (지적재조사 측량방법의 정확도 비교 및 정확도 향상방안 연구)

  • Lee, Suk Bae;Auh, Su Chang;Suh, Yong Woon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.39-46
    • /
    • 2014
  • Network RTK GNSS positioning technique which has been developed to overcome the limitation of Single reference station RTK is used widely in the field of general surveying, cadastre surveying and engineering surveying due to the high accuracy and efficiency. It is specified Network RTK, Single reference station RTK and Static of GNSS as a surveying method in the regulation of Cadastre Re-survey Surveying. In this study, Network RTK and Static GNSS surveying were accomplished at cadastral re-survey field in Hadong, Gyeongnam and the surveying results were compared. Also, to analyze the performance of site calibration in Network RTK surveying, two types of Network RTK surveying with and without site calibration were accomplished and the results was compared. The research result shows that average positioning error between Network RTK(VRS) without site calibration and Static surveying result is 2.44cm and 1.53cm respectively and average positioning error between Network RTK(VRS) with site calibration and Static surveying result is 0.19cm and 0.82cm respectively at two zone. So, it was proved the effect of calibration in network RTK(VRS) surveying.

Experiments of Individual Tree and Crown Width Extraction by Band Combination Using Monthly Drone Images (월별 드론 영상을 이용한 밴드 조합에 따른 수목 개체 및 수관폭 추출 실험)

  • Lim, Ye Seul;Eo, Yang Dam;Jeon, Min Cheol;Lee, Mi Hee;Pyeon, Mu Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.67-74
    • /
    • 2016
  • Drone images with high spatial resolution are emerging as an alternative to previous studies with extraction limits in high density forests. Individual tree in the dense forests were extracted from drone images. To detect the individual tree extracted through the image segmentation process, the image segmentation results were compared between the combination of DSM and all R,G,B band and the combination of DSM and R,G,B band separately. The changes in the tree density of a deciduous forest was experimented by time and image. Especially the image of May when the forests are dense, among the images of March, April, May, the individual tree extraction rate based on the trees surveyed on the site was 50%. The analysis results of the width of crown showed that the RMSE was less than 1.5m, which was the best result. For extraction of the experimental area, the two sizes of medium and small trees were extracted, and the extraction accuracy of the small trees was higher. The forest tree volume and forest biomass could be estimated if the tree height is extracted based on the above data and the DBH(diameter at breast height) is estimated using the relational expression between crown width and DBH.

Development of 3D Mapping System for Web Visualization of Geo-spatial Information Collected from Disaster Field Investigation (재난현장조사 공간정보 웹 가시화를 위한 3차원 맵핑시스템 개발)

  • Kim, Seongsam;Nho, Hyunju;Shin, Dongyoon;Lee, Junwoo;Kim, Hyunju
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1195-1207
    • /
    • 2020
  • With the development of GeoWeb technology, 2D/3D spatial information services through the web are also has been used increasingly in the application of disaster management. This paper is suggested to construct a web-based 3D geo-spatial information mapping platform to visualize various spatial information collected at the disaster site in a web environment. This paper is presented a web-based geo-spatial information mapping service plan for the various types of 2D/3D spatial data and large-volume LiDAR point cloud data collected at the disaster accident site using HTML5/WebGL, web development standard technology and open source. Firstly, the collected disaster site survey 2D data is constructed as a spatial DB using GeoServer's WMS service and PostGIS provided an open source and rendered in a web environment. Secondly, in order to efficiently render large-capacity 3D point cloud data in a web environment, a Potree algorithm is applied to simplifies point cloud data into 2D tiles using a multi-resolution octree structure. Lastly, OpenLayers3 based 3D web mapping pilot system is developed for web visualization of 2D/3D spatial information by implementing basic and application functions for controlling and measuring 3D maps with Graphic User Interface (GUI). For the further research, it is expected that various 2D survey data and various spatial image information of a disaster site can be used for scientific investigation and analysis of disaster accidents by overlaying and visualizing them on a built web-based 3D geo-spatial information system.

Measurement Accuracy for 3D Structure Shape Change using UAV Images Matching (UAV 영상정합을 통한 구조물 형상변화 측정 정확도 연구)

  • Kim, Min Chul;Yoon, Hyuk Jin;Chang, Hwi Jeong;Yoo, Jong Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Recently, there are many studies related aerial mapping project and 3 dimensional shape and model reconstruction using UAV(unmanned aerial vehicle) system and images. In this study, we create 3D reconstruction point data using image matching technology of the UAV overlap images, detect shape change of structure and perform accuracy assessment of area($m^2$) and volume($m^3$) value. First, we build the test structure model data and capturing its images of shape change Before and After. Second, for post-processing the Before dataset is convert the form of raster format image to ensure the compare with all 3D point clouds of the After dataset. The result shows high accuracy in the shape change of more than 30 centimeters, but less is still it becomes difficult to apply because of image matching technology has its own limits. But proposed methodology seems very useful to detect illegal any structures and the quantitative analysis of the structure's a certain amount of damage and management.

Development of Cutting Slope Management System Using PDA (개인용 휴대 단말기를 이용한 절토사면 관리시스템 개발)

  • Kim, Jae-Cheol;Park, Jae-Kook;Yang, In-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.59-69
    • /
    • 2007
  • The scale of a natural disaster grows bigger and bigger every year. The government spends much of its budget on recovering the resulting damage on a national scale. It is important to shift the paradigm from taking measures after a disaster to that of taking preventive actions before a disaster in order to bring a fundamental resolution to such problems. In taking preventive actions and policies, it is necessary to integrate various kinds of advanced technologies including IT, high-tech information gathering technology and operational technology, and to predict and evaluate natural disasters on a comprehensive level. Although Korea is a country with a strong IT sector, most information gathering is still performed in paper. In particular, information about the areas of previous landslide occurrences and slopes remains on paper, which makes it difficult to share the information and to discern the contents, and also raises the possibility of missing documents. Thus this study set out to develop an information gathering and management system for cutting slopes using PDA from the perspective of information gathering, system compatibility, and information management. As a result, field information may be gathered in a variety of forms (location, photos, and texts) real-time. A rough judgment was also made of the stability of rock slopes using the SMR method on the field.

  • PDF

A Study on a utilizing Mobile Mapping System for establishing the High Speed Outdoor Positioning DB based on Field Check Data (정위치 기반 고속 실외 측위 DB 구축을 위한 MMS활용 방안에 관한 연구)

  • Lee, Ha Dong;Lee, Yun;Choi, Yun Soo;Jeong, In Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • Recently, governmental authority and local government are looking for a method of utilizing location information of smart phone for urgent rescue in fire and kidnap situation. Under this background, in this study, a method of rapidly collecting, constructing location determination based Wi-Fi AP data utilizing location information of smart phone and mobile mapping system was suggested in order to construct precise positioning information that could be utilized under urgent situation. By performing compensation work for GPS/INS/DMI through collected outcome, position of collected vehicle was acquired. In addition, source data integrating Wi-Fi information and collected position by coupling based on Wi-Fi AP collector and GPS time was constructed and Wi-Fi radiomap was constructed by removing Wi-Fi signal noise that reduces precise position performance. As a result of performing location determination performance assess ment by selecting 10 test positions by each local government, result value of 25.46cm for total local government average and 27.76m for SD could be obtained. It is considered that this result could be utilized as a technology of being able to supplement or substituting GPS location determination technology that is impossible in plocation determination of mobile communication company's base station (200m~2km) and indoor being used at present.

Automatic Measurement Method of Traffic Signs Using Image Recognition and Photogrammetry Technology (영상인식과 사진측량 기술을 이용한 교통표지 자동측정 방법)

  • Chang, Sang Kyu;Kim, Jin Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.3
    • /
    • pp.19-25
    • /
    • 2013
  • Recently, more accurate database information of facilities is being required, with the increase in importance of urban road facility management. Therefore, this study proposed how to automatically detect particular traffic signs necessary for efficient construction of road facility DB. For this study, central locations of facilities were searched, after recognition and automatic detection of particular traffic signs through an image. Then, coordinate values of traffic signs calculated in the study were compared with real coordinate values, in order to evaluate the accuracy of traffic sign locations which were finally detected. Computer vision technology was used in recognizing and detecting traffic signs through OPEN CV-based coding, and photogrammetry was used in calculating accurate locations of detected traffic signs. For the experiment, circular road signal(No Parking) and triangular road signal(Crosswalk) were chosen out of various kinds of road signals. The research result showed that the circular road signal had a nearly 50cm error value, and the triangular road signal had a nearly 60cm error value, when comparing the calculated coordinates with the real coordinates. Though this result is not satisfactory, it is considered that there would be no problem to find locations of traffic signs.

Orthophoto and DEM Generation Using Low Specification UAV Images from Different Altitudes (고도가 다른 저사양 UAV 영상을 이용한 정사영상 및 DEM 제작)

  • Lee, Ki Rim;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.535-544
    • /
    • 2016
  • Even though existing methods for orthophoto production using expensive aircraft are effective in large areas, they are drawbacks when dealing with renew quickly according to geographic features. But, as UAV(Unmanned Aerial Vehicle) technology has advanced rapidly, and also by loading sensors such as GPS and IMU, they are evaluates that these UAV and sensor technology can substitute expensive traditional aerial photogrammetry. Orthophoto production by using UAV has advantages that spatial information of small area can be updated quickly. But in the case of existing researches, images of same altitude are used in orthophoto generation, they are drawbacks about repetition of data and renewal of data. In this study, we targeted about small slope area, and by using low-end UAV, generated orthophoto and DEM(Digital Elevation Model) through different altitudinal images. The RMSE of the check points is σh = 0.023m on a horizontal plane and σv = 0.049m on a vertical plane. This maximum value and mean RMSE are in accordance with the working rule agreement for the aerial photogrammetry of the National Geographic Information Institute(NGII) on a 1/500 scale digital map. This paper suggests that generate orthophoto of high accuracy using a different altitude images. Reducing the repetition of data through images of different altitude and provide the informations about the spatial information quickly.

3D Visualization Techniques for Volcanic Ash Dispersion Prediction Results (화산재 확산 예측결과의 삼차원 가시화 기법)

  • Youn, Jun Hee;Kim, Ho Woong;Kim, Sang Min;Kim, Tae Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • Korea has been known as volcanic disaster free area. However, recent surveying result shows that Baekdu mountain located in northernmost in the Korean peninsula is not a dormant volcano anymore. When Baekdu mountain is erupting, various damages due to the volcanic ash are expected in South Korea area. Especially, volcanic ash in the air may cause big aviation accident because it can hurt engine or gauges in the airplane. Therefore, it is a crucial issue to interrupt airplane navigation, whose route is overlapped with volcanic ash, after predicting three dimensional dispersion of volcanic ash. In this paper, we deals with 3D visualization techniques for volcanic ash dispersion prediction results. First, we introduce the data acquisition of the volcanic ash dispersion prediction. Dispersion prediction data is obtained from Fall3D model, which is volcanic ash dispersion simulation program. Next, three 3D visualization techniques for volcanic ash dispersion prediction are proposed. Firstly proposed technique is so called 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Second technique is a 'Cube in the Cube' which divide the cube in proportion to particle concentration and locates the small cubes. Last technique is 'Semitransparent Volcanic Ash Plane', which laminates the layer, whose grids present the particle concentration, and apply the semitransparent effect. Based on the proposed techniques, the user could 3D visualize the volcanic ash dispersion prediction results upon his own purposes.