• Title/Summary/Keyword: geometry parameters

Search Result 1,117, Processing Time 0.022 seconds

On the Boundedness of Marcinkiewicz Integrals on Variable Exponent Herz-type Hardy Spaces

  • Heraiz, Rabah
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.259-275
    • /
    • 2019
  • The aim of this paper is to prove that Marcinkiewicz integral operators are bounded from ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ to ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ when the parameters ${\alpha}({\cdot})$, $p({\cdot})$ and $q({\cdot})$ satisfies some conditions. Also, we prove the boundedness of ${\mu}$ on variable Herz-type Hardy spaces $H{\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$.

Hygro-thermal post-buckling analysis of a functionally graded beam

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.459-471
    • /
    • 2019
  • This paper presents post-buckling analysis of a functionally graded beam under hygro-thermal effect. The material properties of the beam change though height axis with a power-law function. In the nonlinear kinematics of the post-buckling problem, the total Lagrangian approach is used. In the solution of the problem, the finite element method is used within plane solid continua. In the nonlinear solution, the Newton-Raphson method is used with incremental displacements. Comparison studies are performed. In the numerical results, the effects of the material distribution, the geometry parameters, the temperature and the moisture changes on the post-buckling responses of the functionally graded beam are presented and discussed.

Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes

  • Ebrahimi, Farzad;Dehghan, M.;Seyfi, Ali
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • In this article, wave propagation characteristics in magneto-electro-elastic (MEE) nanotube considering shell model is studied in the framework nonlocal theory. To account for the small-scale effects, the Eringen's nonlocal elasticity theory of is applied. Nonlocal governing equations of MEE nanotube have been derived utilizing Hamilton's principle. The results of this investigation have been accredited by comparing them of previous studies. An analytical solution of governing equations is used to obtain phase velocities and wave frequencies. The influences of different parameters, such as different mode, nonlocal parameter, length parameter, geometry, magnetic field and electric field on wave propagation responses of MEE nanotube are expressed in detail.

Geometry and load effects on transient response of a VFGM annular plate: An analytical approach

  • Alavia, Seyed Hashem;Eipakchi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.179-197
    • /
    • 2019
  • In this article, the effect of different geometrical, materials and load parameters on the transient response of axisymmetric viscoelastic functionally graded annular plates with different boundary conditions are studied. The behavior of the plate is assumed the elastic in bulk and viscoelastic in shear with the standard linear solid model. Also, the graded properties vary through the thickness according to a power law function. Three types of mostly applied transient loading, i.e., step, impulse, and harmonic with different load distribution respect to radius coordinate are examined. The motion equations and the corresponding boundary conditions are extracted by applying the first order shear deformation theory which are three coupled partial differential equations with variable coefficients. The resulting motion equations are solved analytically using the perturbation technique and the generalized Fourier series. The sensitivity of the response to the graded indexes, different transverse loads, aspect ratios, boundary conditions and the material properties are investigated too. The results are compared with the finite element analysis.

Lost gamma source detection algorithm based on convolutional neural network

  • Fathi, Atefeh;Masoudi, S. Farhad
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3764-3771
    • /
    • 2021
  • Based on the convolutional neural network (CNN), a novel technique is investigated for lost gamma source detection in a room. The CNN is trained with the result of a GEANT4 simulation containing a gamma source inside a meshed room. The dataset for the training process is the deposited energy in the meshes of different n-step paths. The neural network is optimized with parameters such as the number of input data and path length. Based on the proposed method, the place of the gamma source can be recognized with reasonable accuracy without human intervention. The results show that only by 5 measurements of the energy deposited in a 5-step path, (5 sequential points 50 cm apart within 1600 meshes), the gamma source location can be estimated with 94% accuracy. Also, the method is tested for the room geometry containing the interior walls. The results show 90% accuracy with the energy deposition measurement in the meshes of a 5-step path.

Cost optimization of segmental precast concrete bridges superstructure using genetic algorithm

  • Ghiamat, R.;Madhkhan, M.;Bakhshpoori, T.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.503-512
    • /
    • 2019
  • The construction of segmental precast concrete bridge is an increase due to its superior performance and economic advantages. This type of bridge is appropriate for spans within 30 to 150 m (100 to 500 ft), known as mega-projects and the design optimization would lead to considerable economic benefits. A box-girder cross section superstructure of balanced cantilever construction method is assessed here. The depth of cross section, (variable along the span linearly), bottom flange thickness, and the count of strands are considered as design variables. The optimum design is characterized by geometry, serviceability, ductility, and ultimate limit states specified by AASHTO. Genetic algorithm (GA) is applied in two fronts: as to the saving in construction cost 8% and as to concrete volume 6%. The sensitivity analysis is run by considering different parameters like span/depth ratio, relation between superstructure cost, span length and concrete compressive strength.

A spectroscopic study of the effect of humidity on the atmospheric pressure helium plasma jets

  • Han, Duksun
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1375-1380
    • /
    • 2018
  • Atmospheric-pressure plasma has a great potential in many applications due to its simplicity rather than low pressure plasmas. In material processing, biomedical applications, and many other applications, the input power, gas flow rate, and the geometry of electrode have been mainly considered and studied as important external parameters of atmospheric-pressure plasma control. Besides, since the atmospheric-pressure plasmas are typically generated in an open air, the relative humidity is difficult to control and can change day by day. Therefore, the relative humidity cannot be ignored for plasmas. Thus, in this work, the atmospheric-pressure plasma jet was characterized by changing relative humidity, and it was found that the increase in electron density and OH radicals are due to Penning ionization between helium metastable and water vapors at higher humidity condition.

Design for Hybrid Circular Bragg Gratings for a Highly Efficient Quantum-Dot Single-Photon Source

  • Yao, Beimeng;Su, Rongbin;Wei, Yuming;Liu, Zhuojun;Zhao, Tianming;Liu, Jin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1502-1505
    • /
    • 2018
  • We present a design for hybrid circular Bragg gratings (hCBGs) for efficiently extracting single-photons emitted by InAs quantum dots (QDs) embedded in GaAs. Finite-difference time-domain simulations show that a very high photon collection efficiency (PCE) up to 96% over a 50 nm bandwidth and pronounced Purcell factors up to 19 at cavity resonance are obtained. We also systematically investigate the geometry parameters, including the $SiO_2$ thickness, grating period, gap width and the central disk radius, to improve the device performances. Finally, the PCEs and the Purcell factors of QDs located at different positions of the hCBG are studied, and the results show great robustness against uncertainties in the location of the QD.

Temperature thread multiscale finite element simulation of selective laser melting for the evaluation of process

  • Lee, Kang-Hyun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.31-51
    • /
    • 2021
  • Selective laser melting (SLM), one of the most widely used powder bed fusion (PBF) additive manufacturing (AM) technology, enables the fabrication of customized metallic parts with complex geometry by layer-by-layer fashion. However, SLM inherently poses several problems such as the discontinuities in the molten track and the steep temperature gradient resulting in a high degree of residual stress. To avoid such defects, thisstudy proposes a temperature thread multiscale model of SLM for the evaluation of the process at different scales. In microscale melt pool analysis, the laser beam parameters were evaluated based on the predicted melt pool morphology to check for lack-of-fusion or keyhole defects. The analysis results at microscale were then used to build an equivalent body heat flux model to obtain the residual stress distribution and the part distortions at the macroscale (part level). To identify the source of uneven heat dissipation, a liquid lifetime contour at macroscale was investigated. The predicted distortion was also experimentally validated showing a good agreement with the experimental measurement.

Effect of stacking sequence on thermal stresses in laminated plates with a quasi-square cutout using the complex variable method

  • Chaleshtari, Mohammad H. Bayati;Khoramishad, Hadi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.245-259
    • /
    • 2021
  • In this research, the influence of the laminate stacking sequence on thermal stress distribution in symmetric composite plates with a quasi-square cutout subjected to uniform heat flux is examined analytically using the complex variable technique. The analytical solution is obtained based on the thermo-elastic theory and the Lekhnitskii's method. Furthermore, by employing a suitable mapping function, the solution of symmetric laminates containing a circular cutout is extended to the quasi-square cutout. The effect of important parameters including the stacking sequence of laminates, the angular position, the bluntness, the aspect ratio of cutout, the flux angle and the composite material are examined on the thermal stress distribution. It is found out that the circular shape for cutout may not necessarily be the optimum geometry for all stacking sequences. The finite element analysis results are used to validate the analytical solution.