• Title/Summary/Keyword: geometry parameters

Search Result 1,119, Processing Time 0.029 seconds

A New Driving Mechanism to Allow a Rescue Robot to Climb Stairs

  • Lim, Sung-Kyun;Park, Dong-II;Kwak, Yoon-Keun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.3-7
    • /
    • 2007
  • There have been numerous studies directed toward the development of driving mechanisms for off-road mobility and rescue robots. To achieve surveillance, reconnaissance, and rescue, it is necessary for robots to have a driving mechanism that can handle off-road environments, We propose a new type of single-track driving mechanism with a variable geometry for a rescue robot, This mechanism has a symmetric configuration so that the robot can advance in two directions and also remain operable when overturned. By transforming its geometry, the robot can reduce energy consumption in steering and rotating as well as maximize its ability to climb obstacles such as stairs. The robot is also designed to have a compact size and low center of gravity to facilitate driving when on a set of stairs. In this paper, we analyzed the design parameters of the robot for the four phases of climbing stairs and determined the specifications needed to enhance its adaptability.

The influence of thread geometry on implant osseointegration under immediate loading: a literature review

  • Ryu, Hyo-Sook;Namgung, Cheol;Lee, Jong-Ho;Lim, Young-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.547-554
    • /
    • 2014
  • Implant success is achieved by the synergistic combination of numerous biomechanical factors. This report examines the mechanical aspect of implants. In particular, it is focused on macrodesign such as thread shape, pitch, width and depth, and crestal module of implants. This study reviews the literature regarding the effect of implant thread geometry on primary stability and osseointegration under immediate loading. The search strategy included both in vitro and in vivo studies published in the MEDLINE database from January 2000 to June 2014. Various geometrical parameters are analyzed to evaluate their significance for optimal stress distribution, implant surface area, and bone remodeling responses during the process of osseointegration.

Particle tracking acceleration via signed distance fields in direct-accelerated geometry Monte Carlo

  • Shriwise, Patrick C.;Davis, Andrew;Jacobson, Lucas J.;Wilson, Paul P.H.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1189-1198
    • /
    • 2017
  • Computer-aided design (CAD)-based Monte Carlo radiation transport is of value to the nuclear engineering community for its ability to conduct transport on high-fidelity models of nuclear systems, but it is more computationally expensive than native geometry representations. This work describes the adaptation of a rendering data structure, the signed distance field, as a geometric query tool for accelerating CAD-based transport in the direct-accelerated geometry Monte Carlo toolkit. Demonstrations of its effectiveness are shown for several problems. The beginnings of a predictive model for the data structure's utilization based on various problem parameters is also introduced.

Comparison of Track Recording with Surveying in Track irregularity Measurement (궤도틀림의 검측값과 측량결과 비교)

  • Lee, Jee-Ha;Choi, Ii-Yoon;Kim, Bak-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1090-1095
    • /
    • 2008
  • Track geometry changes by traffic loads. The bigger the changes are, the worse the riding comfort and running stability of train. This is so-called track irregularity and is the most important quality parameters of ballasted track. To objectively assess track irregularity, track geometry should be able to be measured. Practically, railway companies use moving chord method, which determine versine values via a chord. The versine is the vertical distance to curve measured in the middle of the chord. This type of method measures only versine of track irregularity curve by transfer function from the characteristics of measuring device. In this report, review the characteristics of two types of measuring tools by comparing the measurements. The one is GRP-1000 system, optical surveying system with Total station and lazar prism trolley. This calculates track geometry by surveying absolute coordinates of two points each on both rail heads. The other is EM-120, measures versine with 10m of symmetrical chord length.

  • PDF

THE USE OF NEURAL NETWORK TECHNOLOGIES TO DETERMINE WELDING

  • Kim, Ill-Soo;Jeong, Young-Jae;Park, Chang-Eun;Sung, Back-Sub;Kim, In-Ju;Son, Jon-Sik;Yarlagadda, Prasad K.D.V.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.301-306
    • /
    • 2002
  • This paper presents the use of the neural network technology to establish a mathematical model for predicting bead geometry (top-bead width, top-bead height, back-bead width and back-bead height) for multi-pass welding, and understand relationships between process parameters and bead geometry for robotic GMA welding process. Using a series of robotic arc welding, additional multi-pass butt welds were carried out in order to verify the performance of the developed neural network model. The results show that not only the proposed model can predict the bead geometry with reasonable accuracy and guarantee the uniform weld quality, but also the neural network model could be better than the linear and curvilin ear equations developed from Lee [8].

  • PDF

Force Prediction and Stress Analysis of a Twist Drill from Tool Geometry and Cutting Conditions

  • Kim, Kug-Weon;Ahn, Tae-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2005
  • Drilling process is one of the most common, yet complex operations among manufacturing processes. The performance of a drill is largely dependent upon drilling forces, Many researches focused on the effects of drill parameters on drilling forces. In this paper, an effective theoretical model to predict thrust and torque in drilling is presented. Also, with the predicted forces, the stress analysis of the drill tool is performed by the finite element method. The model uses the oblique cutting model for the cutting lips and the orthogonal cutting model for the chisel edge. Thrust and torque are calculated analytically without resorting to any drilling experiment, only by tool geometry, cutting conditions and material properties. The stress analysis is performed by the commercial FEM program ANSYS. The geometric modeling and the mesh generation of a twist drill are performed automatically. From the study, the effects of the variation of the geometric features of the drill and of the cutting conditions of the drilling on the drilling forces and the stress distributions in the tool are calculated analytically, which can be applicable for designing optimal drill geometry and for improving the drilling process.

Development of Analytical Models for Switched Reluctance Machine and their Validation

  • Jayapragash, R.;Chellamuthu, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.990-1001
    • /
    • 2015
  • This paper presents analysis of Switched Reluctance Machine (SRM) using Geometry Based Analytical Model (GBAM), Finite Element Analysis (FEA) and Fourier Series Model (FSM) with curve fitting technique. Further a Transient Analysis (TA) technique is proposed to corroborate the analysis. The main aim of this paper is to give in depth procedure in developing a Geometry Based Analytical Model of Switched Reluctance Machine which is very accurate and simple. The GBAM is developed for the specifications obtained from the manufacturer and magnetizing characteristic of the material used for the construction. Precise values of the parameters like Magneto Motive Force (MMF), flux linkage, inductance and torque are obtained for various rotor positions taking into account the Fringing Effect (FE). The FEA model is developed using MagNet7.1.1 for the same machine geometry used in GBAM and the results are compared with GBAM. Further another analytical model called Fourier Series Model is developed to justify the accuracy of the results obtained by the methods GBAM and FEA model. A prototype of microcontroller based SRM drive system is constructed for validating the analysis and the results are reported.

Comparison of Chord method with Surveying in Track irregularity Measurement (측량과 현방식 궤도틀림 측정 비교)

  • Lee, Jee-Ha;Lee, Sang-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1647-1652
    • /
    • 2008
  • Track geometry consists of tangent and curved lines, which caused undesirable changes in initial track geometry by traffic loads. The bigger the changes are, the worse the riding comfort and running stability of train. This is so-called track irregularity and is the most important quality parameters of ballasted track. To be able to objectively assess track irregularity, track geometry should be able to be measured. Practically, railway companies use moving chord method, this method determine versine values via a chord. The versine is the vertical distance to curve measured in the middle of the chord. This type of method measures only versine of track irregularity curve by transfer function from specific property of measuring tool. In this report, review the characteristics of two types of measuring tools by comparing the measurements. The one is GRP-1000 system, optical surveying system with Total station and lazar prism trolly. This calculates track geometry by surveying absolute coordinates of two points each on both rail heads. The other is Trackmaster, measures versine with 2m of chord length.

  • PDF

A Study of the Relation Between Nozzle Geometry, Internal flow and Sprays Characteristics in Diesel Fuel Injection Systems

  • Payri, Raul;Molina, S.;Salvador, F.J.;Gimeno, J.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1222-1235
    • /
    • 2004
  • This study examines the influence of geometry on the internal flow and macroscopic behavior of the spray in Diesel nozzles. For this investigation, two bi-orifice nozzles were employed: one cylindrical and one conical. The first step is to use a non-destructive characterization method which is based on the production of silicone moulds so that the precise internal geometry of the two nozzles can be measured. At this stage the nozzles have been characterized dimensionally and therefore the internal flow can be studied using CFD calculations. The results gained from this experiment make it possible also to ascertain the critical cavitation conditions. Once the critical cavitation conditions have been identified, the macroscopic parameters of the spray can be studied in both cavitating and non-cavitating conditions using a test rig pressurized with nitrogen and with the help of a image acquisition system and image processing software. Consequently, research can be carried out to determine the influence that cavitation has on macroscopic spray behavior. From the point of view of the spray macroscopic behavior, the main conclusion of the paper is that cavitation leads to an increment of the spray cone angle. On the other hand, from the point of view of the internal flow, the hole outlet velocity increases when cavitation appears. This phenomenon can be explained by the reduction in the cross section of the liquid phase in the outlet section of the hole.

A Study on Electric Field Distribution with Bushing Geometry (부싱 형상에 따른 전계 분포에 관한 연구)

  • Cho, Kook-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.7-12
    • /
    • 2008
  • This paper described results for desiging the best effective bushing geometry by comparing the distribution of the electric field according to bushing geometry. Twelve cases of the geometrical change are tried to analysis. Improvement of the insulation strength related with the vector and the electric field distribution are reached to about 0.7[%] and $21{\sim}26[%]$ by changing the electrode length, respectively. Moreover, in cases of the change of insulator thickness at high-voltage parts, the insulation strength relevant to the same parameters as mentioned above are 2[%] and $23{\sim}43[%]$, respectively Consequently, the quenching voltage for interrupting the partial discharge might be improved due to increasing the insulation strength by the geometrical change.