• Title/Summary/Keyword: geometry of the ball

Search Result 82, Processing Time 0.028 seconds

Optimum Shoulder Height Design using Non-dimensional Shape Variables of Ball Bearing (볼 베어링의 무차원 형상변수를 이용한 최적 턱 높이 설계)

  • Choi, DongChul;Kim, TaeWan
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This paper presents an optimization method to determine the shoulder height of an angular contact ball bearing by 3D contact analysis using nondimensional-shaped variables. The load analysis of the ball bearing is performed to calculate the internal load distributions and contact angles of each rolling element. From the results of bearing load analysis and the contact geometry between the ball and inner/outer raceway, 3D contact analyses using influence function are conducted. The nondimensional shoulder height and nondimensional load are defined to give the generalized results. The relationship between the shoulder height and radius of curvature of the shoulder under various loading conditions is investigated in order to propose a design method for the two design parameters. Using nondimensional parameters, the critical shoulder heights are optimized with loads, contact angles, and conformity ratios. We also develop contour maps of the critical shoulder height as functions of internal loads and contact angles for the different contact angles using nondimensional parameters. The results show that the dimensionless shoulder height increased as the contact angle and dimensionless load increased. Conversely, when the conformity ratio increased, the critical shoulder height decreased. Therefore, if the contact angle is reduced and the conformity ratio is increased within the allowable range, it will be an efficient design to reduce the shoulder height of ball bearings.

Determination of Shoulder Height for Ball Bearing using Contact Analysis (접촉해석을 이용한 볼 베어링의 Shoulder Height 결정)

  • Kim Tae-Wan;Cho Yong-Joo;Yoon Ki-Chan;Park Chang-Nam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.377-383
    • /
    • 2003
  • In this study, the methodology for determination of shoulder height in the internal shape design of ball bearing using 3D contact analysis is proposed. The quasi-static analysis of a ball bearing was performed to calculate the distribution of applied contact load and angles among the rolling elements. From each rolling element loads and the contact geometry between ball and inner/outer raceway, 3D contact analyses using influence function are conducted. These methodology is applied to HDD ball bearing. The critical axial load and the critical shoulder height which are not affected by edge in the present shoulder height is calculated. The proposed methodology may be applied to other rolling element bearing for the purpose of reducing the material cost and improving the efficiency of the bearing design process.

  • PDF

Evaluation of Numerical Model of a Ball Valve used for a Gas Pipeline (가스 파이프라인용 볼 밸브의 수치해석 모델 평가)

  • KIM, CHUL-KYU;LEE, KYOUNG-KEUN;LIM, TAE-GYUN;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.764-772
    • /
    • 2016
  • This paper presents on the evaluation of numerical analysis model of a ball valve used for a gas pipeline. The ball valve has important role to control the gas flow of the pipeline as well as safety operation to prevent gas explosion at the emergency. For the validation of numerical simulation, the computational domains are introduced three different types: a hexahedron chamber connected to a pipeline outlet without considering the geometry of pressure tubes, a pipeline only considered the geometry of pressure tubes, and a pipeline connected both of the a hexahedron chamber and pressure tubes. The commercial code, SC/Tetra, is introduced to solve the three-dimensional steady-state Reynolds-averaged Navier-Stokes analysis in the present study. The valve flow coefficient and valve loss coefficient with respect to the valve opening rate of 30%, 50%, and 70% are compared with experimental results. Throughout the numerical analysis for the three analysis domains, pressure computed along the pipeline is affected by computational domains. It is noted pressure obtained by the computational model considering both of the a hexahedron chamber and pressure tubes has a relatively good agreement to the experimental data.

Precision Machining Characteristics in Ball-end Milling of Sculptured Surfaces (볼 엔드밀에 의한 자유곡면의 정밀가공특성)

  • 김병희
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.78-87
    • /
    • 2001
  • This paper deals with the study on the cutting characteristics in ball-end milling process. First of all, the effects of the geometric cutting conditions such as the cutting speed, feedrates and the path interval on the surface integrity were evaluat-ed by the analytical and the experimental approaches. Secondly, the cutting mechanism model was developed to predict the cutting force accurately. It is possible for the proposed model to predict the shape error, estimate system stability and build the reliable adaptive control system. A large amount of experimental set are performed to show the validities of the proposed theories and to investigate the effect of cutting geometry such as rubbing effects, burr effects and etc.

  • PDF

Cutting force prediction in the ball-end milling process of barious cutting area using Z-map (Z map을 이용한 임의의 절삭영역에서 볼엔드밀의 절삭력예측)

  • 김규만;조필주;김병희;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.57-65
    • /
    • 1997
  • In this study, a cutting force in the Ball-end milling process is calculated using Z-map. Z-map can describe any type of cutting area resulting from the previous cutting geometry and cutting condition. Cutting edge of a ball-end mill is divided into infinitesimal cutting edge elements and the position of the ele- ment is projected to the cutter plane normal to the Z axis. Also the cutting area in the cutter plane is obtained by using the Z-map. Comparing this projected position with cutting area, it can be determined whether it engages in the cutting. The cutting force can be calculated by numerical integration of cutting force acting on the engaged cutting edge elements. A series of experiments such as contouring and upward/downward ramp cutting was performed to verify the calculated cutting force.

  • PDF

CESÀRO OPERATORS IN THE BERGMAN SPACES WITH EXPONENTIAL WEIGHT ON THE UNIT BALL

  • Cho, Hong Rae;Park, Inyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.705-714
    • /
    • 2017
  • Let $A^2_{{\alpha},{\beta}}(\mathbb{B}_n)$ denote the space of holomorphic functions that are $L^2$ with respect to a weight of form ${\omega}_{{\alpha},{\beta}}(z)=(1-{\mid}z{\mid}^{\alpha}e^{-{\frac{\beta}{1-{\mid}z{\mid}}}}$, where ${\alpha}{\in}\mathbb{R}$ and ${\beta}$ > 0 on the unit ball $\mathbb{B}_n$. We obtain some results for the boundedness and compactness of $Ces{\grave{a}}ro$ operator on $A^2_{{\alpha},{\beta}(\mathbb{B}_n)$.

Theoretical Estimation of Machined Surface Profile by Tool Alignment Errors in Ball-End Milling (볼 엔드밀링에서의 공구 정렬 오차에 의한 가공면의 이론적인 평가)

  • Shin Y.J.;Park K.T.;Lee J.H.;Kang B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.627-628
    • /
    • 2006
  • High speed milling process is emerging as an important fabrication process benefits include the ability to fabricate micro and meso-scale parts out of a greater range of materials and with more varied geometry. It also enables the creation of micro and meso-scale molds for injection molding. Factors affecting surface roughness have not been studied in depth for this process. A series of experiments has been conducted in order to begin to characterize the factors affecting surface roughness and determine the range of attainable surface roughness values for the high speed milling process. It has previously been shown that run-out creates a greater problem for the dimensional accuracy of pans created by high speed milling process. And run-out also has a more significant effect on the surface quality of milled parts. The surface roughness traces reveal large peak to valley variations. This run-out is generated by spindle dynamics and tool geometry. In order to investigate the relationship between tool alignment errors and surface roughness the scallop generating mechanism in the ball-end milling with tool alignement errors has been studied and simulated. The results indicate that tool alignment errors have no significant effects ell the dimension of scallops in for flat planes.

  • PDF

NUMERICAL STUDY OF VARIABLE GEOMETRY NOZZLE FLOW USING A MESH DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 격자 변형 기법을 이용한 가변노즐 유동 해석)

  • Kim, J.W.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 2013
  • In the present study, unsteady flow simulations of a variable geometry nozzle were conducted using a two-dimensional flow solver based on hybrid unstructured meshes. The variable geometry nozzle is used to achieve efficient performances of aircraft engines at various operating conditions. To describe the motion of the variable geometry nozzle, an algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements. A ball-vertex spring analogy was used for inviscid elements. The aerodynamic data were obtained for a range of nozzle pressure ratios, and the validations were made by comparing the present results with available experimental data. The unsteady nozzle flows were simulated with an oscillating diverging section and a converging-diverging section. It was found that the nozzle performances are influenced by the nozzle exit flow characteristics, mass flow rate, as well as unsteady effects. These unsteady effects are shown to behave differently depending on the frequency of the nozzle motion.