• Title/Summary/Keyword: geometrical parameters

Search Result 744, Processing Time 0.031 seconds

Thermal Residual Stresses in the Frequency Selective Surface Embedded Composite Structures and Design of Frequency Selective Surface (주파수 선택적 투과막이 결합된 복합재료의 잔류응력평가 및 선택적 투과막 설계)

  • Kim, Ka-Yeon;Chun, Heoung-Jae;Kang, Kyung-Tak;Lee, Kyung-Won;Hong, Ic-Pyo;Lee, Myoung-Keon
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, Particle Swarm Optimization(PSO) is applied to the design of the Frequency Selective Surface(FSS) and residual stresses of hybrid radome is predicted. An equivalent circuit model with Square Loops arrays was derived and then PSO was applied for acquiring the optimized geometrical parameters with proper resonant frequency. Residual stresses occur in the FSS embedded composite structures after cocuring and have a great influence on the strength of the FSS embedded composite structures. They also effect transmission quality because of delamination. Therefore, the thermal residual stresses of FSS embedded composite structures were analyzed using finite element analysis with considering the effects of FSS pattern, and composite stacking sequence.

Dynamic Characteristics and Piezoelectric Effect of Energy Harvesting Block Structures with Different Shapes (다양한 형상 변화에 따른 에너지 수확용 블록 구조의 동적 특성 및 압전 효과)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.379-387
    • /
    • 2012
  • This study investigates free vibration characteristics of new energy harvesting multi-layer block structures with different geometrical shapes using solid and shell finite elements and evaluate their piezoelectric effect on experiments. The two and three-dimensional finite element (FE) delamination models for block structures described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the entire vibration mode shape. The FE model using ABAQUS is used for studying free vibrations of multi-layer block structures for various tip mass and PZT. In particular, new results reported in this paper are focused on the significant effects of the global and local vibration modes for various parameters, such as size of block shape, existence of tip mass and hole, and location of tip mass and PZT. In addition, we evaluate the power generation capacity of developed energy block structures through a laboratory-scale experiment.

Effect of Surfactants on the Controlled Release of Bupivacaine HCl from Biodegradable Microfluidic Devices (생분해성 마이크로 유체 약물전달장치의 Bupivacaine HCl 전달특성에 대한 계면활성제의 영향)

  • Yang, Sung-Yeun;Lee, Kang-Ju;Ryu, Won-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.545-551
    • /
    • 2012
  • We investigated the diffusive transport of bupivacaine HCl through the microchannels of microfluidic drug delivery devices. In the biodegradable microfluidic drug delivery devices developed in this research, the drug release rate can be controlled by simply modulating the geometrical parameters of the microchannels, such as the length, number, and cross-sectional area of the microchannels, when the microchannels are used as paths for drug release. However, the hydrophobic nature of a biodegradable polymer, 85/15 poly(lactic-co-glycolic acid), hinders the infiltration of a release medium (phosphate-buffered saline) through the microchannels into the reservoir of a device that contains bupivacaine HCl, at the early stage of drug release. This can have an adverse effect on the early stage release of local analgesic compounds from the device. In this study, microfluidic channels were surface-treated with surfactants such as PEG600 and Tween80, and the effects of the surfactants on the release performance are presented and analyzed.

A Study on the Performance Characteristics of PE-$N_2O$ Hybrid Rocket Motor with the Variation of Fuel Grain Configuration (PE-$N_2O$ 하이브리드 로켓 모터의 연료 그레인 형상 변화에 따른 성능 특성에 관한 연구)

  • Jo, Seung-Hyun;Kim, Sang-Kyum;Kim, Seong-Jin;Kim, Jong-Chan;Yoon, Chang-Jin;Sung, Hong-Gye;Kim, Jin-Kon;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.398-401
    • /
    • 2007
  • The performance characteristics of Polyethylene-Nitrous oxide (PE-N2O) hybrid rocket motor with the variation of the grain geometry was investigated. To compare the performance parameters under the different port number, single and four port grains were used in this study. In order to improve the performance by enhancing mixing between fuel and oxidizer, the fuel grain having the mixing chamber was additionally studied. From the motor firing tests, it is found that the motor having 4-port fuel grain with the mixing chamber showed the highest performance among all cases. Therefore we have confirmed that with only the geometrical change of the fuel grain, it was possible to give quite influential improvement on the motor performance

  • PDF

Design and Cold Flow Test of a Multi-injector Engine using Hydrogen Peroxide/Kerosene (과산화수소/케로신을 이용한 다중 분사기 엔진 설계 및 수류 실험)

  • Lee, Yang-Suk;Jeon, Jun-Su;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2012
  • Multi-injector rocket engine using high-concentrated hydrogen peroxide and kerosene was designed and manufactured. Design requirements of a rocket engine were determined and main geometrical parameters of rocket engine were determined on the basis of fundament. Six coaxial swirl injectors were mounted on the multi-injector engine. Flow analysis in the hydrogen peroxide manifold was performed to minimize stagnation and recirculation zones. Finally, the optimized hydrogen peroxide manifold was manufactured and cold flow test was carried out to confirm mass flow rate per uni-element, spray pattern and atomization characteristics. The results of cold flow test showed that the mixing head design process was successful and enough to use as a essential database for the development of a full-scale engine.

Theoretical Investigation for the Molecular Structure and Binding Energies of C6H6+-(H2O)n (n=1-5) Complexes (벤젠양이온-물 복합체[C6H6+-(H2O)n (n=1-5)]의 결합 에너지 및 분자 구조에 관한 이론적 연구)

  • Kim, Si-Jo;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.671-679
    • /
    • 2010
  • The geometrical parameters and binding energies of the benzene ion-water complex [$C_6H_6^+-(H_2O)_n$(n=1-5)] have been investigated using ab initio (MP2) and density functional theory (DFT) with large basis sets. The harmonic vibrational frequencies and IR intensities are also determined to confirm that all the optimized geometries are true minima. Also zero-point vibrational energies have been considered to predict the binding energies. The predicted binding energy of 8.6 kcal/mol for $C_6H_6^+-(H_2O)$ at the MP2/aug-cc-pVTZ level of theory is in excellent agreement with recent experimental result of $8.5{\pm}1$ kcal/mol.

A Study on Pilot Scale Cyclonic-DAF Reactor for Cyanobacteria Removal (남조류 제거를 위한 선회식 가압부상장치 현장 적용에 관한 연구)

  • Oh, Hong-Sok;Kang, Seon-Hong;Nam, Sook-Hyun;Kim, Eu-Ju;Koo, Jae-Wuk;Hwang, Tae-Mun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.5
    • /
    • pp.17-28
    • /
    • 2018
  • Cyclonic-dissolved air flotation(Cyclonic-DAF), an advanced form of pressure flotation, applies a structure that enables the forming of twirling flows. This in turn allows for suspended matter to adhere to microbubbles and float to the surface of a treatment tank during the process of intake water flowing through a float separation tank. This study conducted a lab-scale test and pursued geometrical modeling using computational fluid dynamics(CFD) to establish a pilot scale design. Based on the design parameters found through the above process, a pilot cyclonic-DAF system($10m^3/hr$) for removing algae was created. Upon developing the pilot-scale cyclonic-DAF system, a type of algae coagulant(R-119) was applied as the coagulant to the system for field testing through which the removal rates of chlorophyll-a and cyanobacteria were evaluated. The chlorophyll-a and harmful cyanobacteria of the raw water at region B, the field-test site, were found to be $177.9mg/m^3$ and 652,500cells/mL respectively. Treated waters applied with 60mg/L and 100mg/L of algae coagulant presented removal efficiencies of approximately 95% and 97%, respectively. The cyanobacteria cell number of the treated waters applied with 60mg/L and 100mg/L of algae coagulant both that were equal to or less than 1,000cells/mL and were below attention level criteria for the issuance of algae boundary.

A Method for Customizing Flexible Pavement Design Parameters for EDCF-Funded Projects in Asia (아시아 지역 EDCF 사업의 가요성포장 설계 계수 적용방안)

  • Shim, Cha-Sang;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.21-31
    • /
    • 2017
  • PURPOSES : One of the main components of road projects funded by the Economic Development Cooperation Fund (EDCF) is the improvement or rehabilitation of existing pavements. The result is that pavement structures are critical to the success of a project. There is, however, no design standard available at present that reflects a region's specific features including climate conditions and quality of pavement materials. For this reason, a comparative study of the major EDCF borrowers' flexible pavement design standards was conducted. This study led to the proposal of a new method for applying flexible pavement designs which can be used for EDCF-funded projects in Asia. METHODS : The method has been produced by adjusting some input data of the "AASHTO Interim Guide for Design of Pavement Structures" in accordance with certain Asian countries' geometrical features, tropical and subtropical weather, and strength of pavement materials. The Philippine regional factors, having five different grades, have been selected after taking into consideration the amount of rainfall, strength of pavement materials, and characteristics of the Asia and Pacific regions. Structural layer coefficients have been prepared for two different regions according to the geometric difference between Southeast and Southwest Asia. The Philippine and Sri Lankan coefficients have been used for Southeast Asia and Southwest Asia, respectively. CONCLUSIONS : Owing to applying this new method, it was verified that the thickness of the pavement was underestimated by between 11 cm and 16 cm compared with the originally designed thickness. Having discovered that the use of the Korean and American-oriented factors and coefficients is not appropriate for other Asian countries, the new method is expected to enhance the quality of pavement in future projects.

An Investigation on Flow Stability with Damping of Flow Oscillations in CANDU-6 heat Transport System (CANDU-6 열수송 계통의 유동 진동감쇠에 의한 유동안정성 연구)

  • 김태한;심우건;한상구;정종식;김선철
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.163-177
    • /
    • 1996
  • An investigation on thermohydraulic stability of flow oscillations in the CANada Deuterium Uranium-600(CANDU-6) heat transport system has been conducted. Flow oscillations in reactor coolant loops, comprising two heat sources and two heat sinks in series, are possibly caused by the response of the pressure to extraction of fluid in two-phase region. This response consists of two contributions, one arising from mass and another from enthalpy change in the two-phase region. The system computer code used in the investigation os SOPHT, which is capable of simulating steady states as well as transients with varying boundary conditions. The model was derived by linearizing and solving one-dimensional, homogeneous single- and two-phase flow conservation equations. The mass, energy and momentum equations with boundary conditions are set up throughout the system in matrix form based on a node-link structure. Loop stability was studied under full power conditions with interconnecting the two compressible two phase regions in the figure-of-eight circuit. The dominant function of the interconnecting pipe is the transfer of mass between the two-phase regions. Parametric survey of loop stability characteristics, i. e., damping ratio and period, has been made as a function of geometrical parameters of the interconnection line such as diameter, length, height and orifice flow coefficient. The stability characteristics with interconnection line has been clarified to provide a simple criterion to be used as a guide in scaling of the pipe.

  • PDF

Design of Oceanography Buoy - Part II: Mooring System (해양관측용 부이의 설계 건전성 평가 - Part II: 계류시스템 구조건전성 평가)

  • Keum, Dong-Min;Kim, Tae-Woo;Han, Dae-Suk;Lee, Won-Boo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The purpose of the present study was to evaluate the safety under extreme environmental conditions and the dynamic safety under service environment conditions, of oceanographic buoy mooring systems consisting of a variety of materials, including chain, wire rope, nylon rope, and polypropylene rope. For the static safety assessment of a mooring system, after the calculation of external forces and the division of a mooring system into finite elements, the numerical integral was conducted to yield the elemental static tension until satisfying the geometrical convergence condition. To evaluate the dynamic safety, various processes were considered, including data collection about the anticipated areas for mooring, a determination of the parameters for the interpretation, the interpretation of the dynamic characteristics based on an analytic equation that takes into account the heave motion effect of a buoy hull and a mooring system, and a fatigue analysis of the linear cumulative damage. Based on the analysis results, a supplementary proposal for a wire rope that has a fracture in an actual mooring area was established.