• Title/Summary/Keyword: geometrical factor

Search Result 236, Processing Time 0.024 seconds

A Study on the Numerical Wave Propagation Properties of the Finite Difference-Time Domain(FD-TD) Method for EM Wave Problems (전자파 문제에 대한 시간영역-유한차분법의 수치파 전파모델의 성질에 관한 연구)

  • 김인석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1595-1611
    • /
    • 1994
  • In this paper, the numerical wave propagation properties of the finite difference-time domain(FD-TD) method is investigated as a discrete model describing electromagnetic(EM) wave propagation phenomena. The leap-frog approximation of Maxwell's curl equations in time-space simulates EM wave propagation in terms of the numerical characteristic and the domain of dependence. A geometrical interpretation of the FD-TD numerical procedure is presented. The numerical dispersion error due to the leap-frog approximation and its dependence on the stability factor are illustrated. The FD-TD method using the leap-frog approximation is inherently a descriptive model. Thus, not only any physical picture about EM wave propagation phenomena can be drawn through this model, but also physical or engineering parameters in the frequency domain can be extracted from descriptive results. E-plane filter characteristics in the WR-28 rectangular waveguide and reflection property of an inductive iris in the WR-90 rectangluar waveguide extracted from simulation of the FD-TD model is included.

  • PDF

Design of RFID Air Protocol Filtering and Probabilistic Simulation of Identification Procedure (RFID 무선 프로토콜 필터링의 설계와 확률적 인식 과정 시뮬레이션)

  • Park, Hyun-Sung;Kim, Jong-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6B
    • /
    • pp.585-594
    • /
    • 2009
  • Efficient filtering is an important factor in RFID system performance. Because of huge volume of tag data in future ubiquitous environment, if RFID readers transmit tag data without filtering to upper-layer applications, which results in a significant system performance degradation. In this paper, we provide an efficient filtering technique which operates on RFID air protocol. RFID air protocol filtering between tags and a reader has some advantages over filtering in readers and middleware, because air protocol filtering reduces the volume of filtering work before readers and middleware start filtering. Exploiting the air protocol filtering advantage, we introduce a geometrical algorithm for generating air protocol filters and verify their performance through simulation with analytical time models. Results of dense RFID reader environment show that air protocol filtering algorithms reduce almost a half of the total filtering time when compared to the results of linear search.

Conceptual Design of a Solid State Telescope for Small scale magNetospheric Ionospheric Plasma Experiments

  • Sohn, Jongdae;Lee, Jaejin;Jo, Gyeongbok;Lee, Jongkil;Hwang, Junga;Park, Jaeheung;Kwak, Young-Sil;Park, Won-Kee;Nam, Uk-Won;Dokgo, Kyunghwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.195-200
    • /
    • 2018
  • The present paper describes the design of a Solid State Telescope (SST) on board the Korea Astronomy and Space Science Institute satellite-1 (KASISat-1) consisting of four [TBD] nanosatellites. The SST will measure these radiation belt electrons from a low-Earth polar orbit satellite to study mechanisms related to the spatial resolution of electron precipitation, such as electron microbursts, and those related to the measurement of energy dispersion with a high temporal resolution in the sub-auroral regions. We performed a simulation to determine the sensor design of the SST using GEometry ANd Tracking 4 (GEANT4) simulations and the Bethe formula. The simulation was performed in the range of 100 ~ 400 keV considering that the electron, which is to be detected in the space environment. The SST is based on a silicon barrier detector and consists of two telescopes mounted on a satellite to observe the electrons moving along the geomagnetic field (pitch angle $0^{\circ}$) and the quasi-trapped electrons (pitch angle $90^{\circ}$) during observations. We determined the telescope design of the SST in view of previous measurements and the geometrical factor in the cylindrical geometry of Sullivan (1971). With a high spectral resolution of 16 channels over the 100 keV ~ 400 keV energy range, together with the pitch angle information, the designed SST will answer questions regarding the occurrence of microbursts and the interaction with energetic particles. The KASISat-1 is expected to be launched in the latter half of 2020.

AC Voltage and Frequency Dependence in Tunneling Magnetoresistance Device (터널링 자기저항 소자의 교류 전압 및 주파수 의존성 연구)

  • Bae, Seong-Cheol;Yoon, Seok Soo;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.201-205
    • /
    • 2016
  • In this report, we measured the impedance spectrum in TMR device, and the relaxation behavior of the real and imaginary impedance spectrum was analyzed by using the equilibrant circuit of tunneling capacitance ($C_T$) and tunneling resistance ($R_T$). The relaxation frequency was increased with AC voltage in both the parallel and antiparallel alignment of two magnetic layers. The $R_T$ with AC voltage showed the typical bias voltage dependence. However, the $C_T$ showed large value than the expected geometrical capacitance. The huge increase of $C_T$ was affecting as a limiting factor for the high speed operation of TMR devices. Thus, the supercapacitance of $C_T$ should be considered to design the high speed TMR devices.

A Numerical Study on the Effect of Near Surface Inhomogeneity on Rayleigh Wave Propagation and Dispersion (천부 불균질대에 의한 레일리파 전파 및 분산특성 고찰)

  • Lee, Sang-Min;Park, Kwon-Gyu;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.2
    • /
    • pp.148-154
    • /
    • 2006
  • The effect of small-scale near surface inhomogeneity on Rayleigh wave propagation and dispersion has been investigated in this study using two-dimensional FEM elastic modeling. Various inhomogeneity models with a variety of geometrical shape and embedment depth which exist in homogeneous half-space and two-layered media are considered. Results show that any near surface inhomogeneity greater than one wavelength in terms of minimum wavelength of Rayleigh wave shows dispersion characteristics. Such dispersion effect become stronger as the dimensions of the inhomogeneity increase. The effect of horizontal dimension is more dominant factor governing the dispersion characteristics than vertical dimension. However, the dispersion effect can not be identifiable in seismogram if the horizontal dimension is not wide enough. Nonetheless, even in this case, the existence of inhomogeneity can be inferred by the reflection or transmission event of Rayleigh wave. The results can be expected to provide insights on the behavior of Rayleigh wave which may be helpful for designating field work or new processing scheme to detect near surface inhomogeneity by surface wave method.

Understanding of Non-Thermal Atmospheric Pressure Plasma Characteristics Produced in Parallel Plate Type Geometry

  • Choe, Wonho;Moon, Se Youn;Kim, Dan Bee;Jung, Heesoo;Rhee, Jun Kyu;Gweon, Bomi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.144-144
    • /
    • 2013
  • Non-thermal atmospheric pressure plasmas have recently garnered much attention due to their unique physical and chemical properties that are sometimes significantly different from those of low pressure plasmas. It can offer many possible application areas including nano and bio/medical areas. Many different types of plasma sources have been developed for specific needs, which can be one of the important merits of the atmospheric pressure plasmas since characteristics of the produced plasma depend significantly on operating parameters such as driving frequency, supply gas type, driving voltage waveform, gas flow rate, gas composition, geometrical factor etc. Among many source configurations, parallel plate type geometry is one of the simplest configurations so that it can offer many insights for understanding basic underlying physics. Traditionally, the parallel plate type set up has been studied actively for understanding low pressure plasma physics along with extensive employment in industries for the same reason. By considering that understanding basic physics, in conjunction with plasma-surface interactions especially for nano & bio materials, should be pursued in parallel with applications, we investigated atmospheric pressure discharge characteristics in a parallel plate type capacitive discharge source with two parallel copper electrodes of 60 mm in diameter and several millimeters in gap distance. In this presentation, some plasma characteristics by varying many operating variables such as inter-electrode distance, gas pressure, gas composition, driving frequency etc will be discussed. The results may be utilized for plasma control for widening application flexibility.

  • PDF

Estimation of Dynamic Characteristics of Core Zone of Rockfill Dam by Multi-channel Analysis of Surface Waves (MASW 조사를 통한 사력댐 코어존 동적물성의 평가)

  • Lee, Jong-Wook;Ha, Ik-Soo;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.860-868
    • /
    • 2008
  • Seismic safety analysis of rockfill dams are consist of the stability analysis as an simplifed method and the dynamic analysis as an detailed method. When high risk dams such as Multi-purpose dams were often applied detailed method by dynamic analysis, dynamic properties of dam materials such as shear modulus are considered as most important factor. Dynamic material properties such as shear modulus had to be investigated by cyclic triaxial test et al. during design and construction stage but these were not conducted because of the condition of domestic seismic design technique. MASW and SASW methods had been applied as a non destructive method to investigate dynamic material properties of existing rockfill dam, has no problems in dam safety at present. These methods were usually performed under the assumptions that the subsurface can be described horizontally homogeneous and isotropic layers. Recent studies(Marwin, 1993, Kim, 2001) showed that surface waves generated through inclined structures have different characteristics from those through a horizontally homogeneous layered model. further Kim et al(2005) and Min and Kim(2006) showed that central core type rockfill dam overestimated the shear wave velocities as increasing the depth through the 3D numerical modelling dut to the effect of outer rockfill and geometrical reasons In this study the results of shear wave velocities of seven rockfill dams form comprehensive facility review, was carried out from 2003 to 2007, were collected and analysed to establish the shear wave velocity distribution characteristics in increasing confining stress in rockfill dams and surface wave velocity ranges in rockfill dam through MASW and the limitation in application are discussed to be utilized as an reference value for dynamic analysis.

  • PDF

A Positioning Algorithm Using Virtual Reference for Accuracy Improvement in Relay-Based Navigation System (중계 기반 항법시스템에서 위치정확도 향상을 위한 가상 기준점 활용 측위 알고리즘)

  • Lee, Kyuman;Lim, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2102-2112
    • /
    • 2015
  • In this paper, we propose a new positioning scheme for accuracy improvement of Relay-based Navigation System. The conventional relay-based system occurs larger vertical error than horizontal one due to structural characteristics that positioning references are located toward same direction and a location of user is estimated by triangulation technique. In the proposed positioning scheme, the user position is reestimated using an additional virtual reference which is generated based on position information of reference stations in navigation signals and estimated initial user position. The nearest reference station from the estimated user position is selected as a virtual reference to minimize the effect of geometrical factor. The vertical error decreases by using reference points on multi planes, therefore, accurate positioning is possible than the conventional scheme. We demonstrated that the accuracy of a user is improved through simulation results.

Numerical Modeling and Experimental Verification for Target Strength of Submerged Objects (수중물체에 대한 음향 표적강도의 수치해석과 실험적 검증)

  • CHOI YOUNG-HO;SHIN KEE-CHUL;YOU JIN-SU;KIM JEA-SOO;JOO WON-HO;KIM YOUNG-HYUN;PARK JONG-HYUN;CHOI SANG-MUN;KIM WOO-SHIK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.64-70
    • /
    • 2005
  • Target Strength(TS) is an important factor for the detection of the target in an active sonar system: thus the numerical model for the prediction of TS is widely being developed. For the frequency range of several kHz, the most important scattering mechanism is known to be specular reflection, which is largely affected by the geometrical shape of the target. In this paper, a numerical algorithm to predict TS is developed based on the Kirchhoff approximation which is computationally efficient. The developed algorithm is applied to the canonical targets of simple shapes, for which the analytical solutions exist. The numerical results show good agreement with the analytical solutions. Also, the algorithm is applied to more complex scatterers, and is compared with the experimental data obtained in the water tank experiment for the purpose of verifying the developed numerical model. Discussions on the effect of spatial sampling and other aspects of numerical m odeling are presented.

Stress Intensity Factors for a Center Cracked laminated Composites under Shear Loading (전단하중을 받는 복합 적층재 중앙균열의 응력확대계수)

  • 오재협;김성호;옹장우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.838-848
    • /
    • 1992
  • The objective of the study is to provide a theoretical tools for analyzing the fracture of leyered composites with a center crack. It is assumed that the composite is composed of successive accumulation of the fiber layer and resin layer with the fiber layer being perfectly bonded to the resin layer except the region of a center crack. In-plane shear loading (Mode II) and the anti-plane shear loading (Mode III) are considered separately. Boundary value problems are formulated by using a plane theory of elasticity and governing equations are reduced to a Fredholm integral equation of a second kind. The equation is solved numerically and the stress intensity factors are obtained. The normalized Mode II and Mode III stress intensity factors are evaluated for various combinations of material properties and for various geometrical parametes.