• Title/Summary/Keyword: geometric proof

Search Result 60, Processing Time 0.019 seconds

A study on the geometric construction task of middle school according to the mathematics curriculums (교육과정에 따른 중학교 작도 과제의 변화 연구)

  • Suh, Boeuk
    • East Asian mathematical journal
    • /
    • v.36 no.4
    • /
    • pp.493-513
    • /
    • 2020
  • The reason for this study is that the learning content of geometric construction in school mathematics is very insufficient. Geometric construction not only enables in-depth understanding of shapes, but also improves deductive proof skills. In school mathematics education, geometric construction is a very important learning factor, and educational significance is very high in that it can develop reasoning skills essential to the future society. Nevertheless, the reduction of geometric construction learning content in Korean curriculum and mathematics textbooks is against the times. Therefore, the purpose of this study is to analyze the transition of geometric construction learning contents in middle school mathematics curriculum and mathematics textbooks. In order to achieve the purpose of this study, the following studies were conducted. First, we analyze the characteristics of geometric construction according to changes in curriculum and textbooks. Second, we develop a framework for analyzing geometric construction tasks. Third, we explore geometric construction tasks according to the developed framework. Through this, it is expected to provide significant implications for the geometric areas of the new middle school curriculum that will be developed in the future.

The reinterpretation and visualization for geometric methods of solving the cubic equation (삼차방정식의 기하적 해법에 대한 재조명과 시각화)

  • Kim, Hyang Sook;Kim, Yang;Park, See Eun
    • East Asian mathematical journal
    • /
    • v.34 no.4
    • /
    • pp.403-427
    • /
    • 2018
  • The purpose of this paper is to reinterpret and visualize the medieval Arab's studies on the geometric methods of solving the cubic equation by utilizing Apollonius' symptom of the parabola. In particular, we investigate the results of $Kam{\bar{a}}l$ $al-D{\bar{i}}n$ ibn $Y{\bar{u}}nus$, Alhazen, Umar al-$Khayy{\bar{a}}m$ and $Al-T{\bar{u}}s{\bar{i}}$ by 4 steps(analysis, construction, proof and examination) which are called the complete solution in the constructions. This paper is available in the current middle school curriculum through dynamic geometry program(Geogebra).

GEOMETRIC ANALYSIS ON THE DIEDERICH-FORNÆSS INDEX

  • Krantz, Steven George;Liu, Bingyuan;Peloso, Marco Maria
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.897-921
    • /
    • 2018
  • Given bounded pseudoconvex domains in 2-dimensional complex Euclidean space, we derive analytical and geometric conditions which guarantee the Diederich-$Forn{\ae}ss$ index is 1. The analytical condition is independent of strongly pseudoconvex points and extends $Forn{\ae}ss$-Herbig's theorem in 2007. The geometric condition reveals the index reflects topological properties of boundary. The proof uses an idea including differential equations and geometric analysis to find the optimal defining function. We also give a precise domain of which the Diederich-$Forn{\ae}ss$ index is 1. The index of this domain can not be verified by formerly known theorems.

THE SET OF ZOLL METRICS IS NOT PRESERVED BY SOME GEOMETRIC FLOWS

  • Azami, Shahroud;Fasihi-Ramandi, Ghodratallah
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.855-861
    • /
    • 2019
  • The geodesics on the round 2-sphere $S^2$ are all simple closed curves of equal length. In 1903 Otto Zoll introduced other Riemannian surfaces with the same property. After that, his name is attached to the Riemannian manifolds whose geodesics are all simple closed curves of the same length. The question that "whether or not the set of Zoll metrics on 2-sphere $S^2$ is connected?" is still an outstanding open problem in the theory of Zoll manifolds. In the present paper, continuing the work of D. Jane for the case of the Ricci flow, we show that a naive application of some famous geometric flows does not work to answer this problem. In fact, we identify an attribute of Zoll manifolds and prove that along the geometric flows this quantity no longer reflects a Zoll metric. At the end, we will establish an alternative proof of this fact.

A TOPOLOGICAL PROOF OF THE PERRON-FROBENIUS THEOREM

  • Ghoe, Geon H.
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.565-570
    • /
    • 1994
  • In this article we prove a version of the Perron-Frobenius Theorem in linear algebra using the Brouwer's Fixed Point Theorem in topology. We will mostly concentrate on he qualitative aspect of the Perron-Frobenius Theorem rather than quantitative formulas, which would be enough for theoretical investigations in ergodic theory. By the nature of the method of the proof, we do not expect to obtain a numerical estimate. But we may regard it worthwhile to see why a certain type of result should be true from a topological and geometrical viewpoint. However, a geometric argument alone would give us a sharp numerical bounds on the size of the eigenvalue as shown in Section 2. Eigenvectors of a matrix A will be fixed points of a certain mapping defined in terms of A. We shall modify an existing proof of Frobenius Theorem and that will do the trick for Perron-Frobenius Theorem.

  • PDF

LINEARLY INVARIANT FUNCTIONS

  • Song, Tai-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.4
    • /
    • pp.867-874
    • /
    • 1995
  • Linear invariance is closely related to the concept of uniform local univalence. We give a geometric proof that a holomorphic locally univalent function defined on the open unit disk is linearly invariant if and only if it is uniformly locally univalent.

  • PDF

GSP를 활용한 중학교 수학 교과 연구 -피타고라스 정리를 중심으로-

  • 계영희
    • Journal for History of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.121-132
    • /
    • 2000
  • In this paper, we demonstrate the Pythagorean Theorem by using the computer geometric software, Geometer's Skechpad(GSP) in stead of Eucliean logical proof. Also, we show that two applications of Pythagorean Theorem. The one is constructed by the fact that $ka^2+kb^2=kc^2$, where k is a constant, the other is made by the fractal.

  • PDF

시각화를 이용한 증명교육

  • Kang, Mee-Kwang;Kim, Myung-Jee
    • East Asian mathematical journal
    • /
    • v.24 no.5
    • /
    • pp.527-545
    • /
    • 2008
  • One of the education purpose of the section "Figures" in the eighth grade is to develop students' deductive reasoning ability, which is basic and essential for living in a democratic society. However, most or middle school students feel much more difficulty or even frustration in the study of formal arguments for geometric situations than any other mathematical fields. It is owing to the big gap between inductive reasoning in elementary school education and deductive reasoning, which is not intuitive, in middle school education. Also, it is very burden for students to describe geometric statements exactly by using various appropriate symbols. Moreover, Usage of the same symbols for angle and angle measurement or segments and segments measurement makes students more confused. Since geometric relations is mainly determined by the measurements of geometric objects, students should be able to interpret the geometric properties to the algebraic properties, and vice verse. In this paper, we first compare and contrast inductive and deductive reasoning approaches to justify geometric facts and relations in school curricula. Convincing arguments are based on experiment and experience, then are developed from inductive reasoning to deductive proofs. We introduce teaching methods to help students's understanding for deductive reasoning in the textbook by using stepwise visualization materials. It is desirable that an effective proof instruction should be able to provide teaching methods and visual materials suitable for students' intellectual level and their own intuition.

  • PDF

Analysis on Students' Abilities of Proof in Middle School (중학교 학생의 증명 능력 분석)

  • 서동엽
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.183-203
    • /
    • 1999
  • In this study, we analysed the constituents of proof and examined into the reasons why the students have trouble in learning the proof, and proposed directions for improving the teaming and teaching of proof. Through the reviews of the related literatures and the analyses of textbooks, the constituents of proof in the level of middle grades in our country are divided into two major categories 'Constituents related to the construction of reasoning' and 'Constituents related to the meaning of proof. 'The former includes the inference rules(simplification, conjunction, modus ponens, and hypothetical syllogism), symbolization, distinguishing between definition and property, use of the appropriate diagrams, application of the basic principles, variety and completeness in checking, reading and using the basic components of geometric figures to prove, translating symbols into literary compositions, disproof using counter example, and proof of equations. The latter includes the inferences, implication, separation of assumption and conclusion, distinguishing implication from equivalence, a theorem has no exceptions, necessity for proof of obvious propositions, and generality of proof. The results from three types of examinations; analysis of the textbooks, interview, writing test, are summarized as following. The hypothetical syllogism that builds the main structure of proofs is not taught in middle grades explicitly, so students have more difficulty in understanding other types of syllogisms than the AAA type of categorical syllogisms. Most of students do not distinguish definition from property well, so they find difficulty in symbolizing, separating assumption from conclusion, or use of the appropriate diagrams. The basic symbols and principles are taught in the first year of the middle school and students use them in proving theorems after about one year. That could be a cause that the students do not allow the exact names of the principles and can not apply correct principles. Textbooks do not describe clearly about counter example, but they contain some problems to solve only by using counter examples. Students have thought that one counter example is sufficient to disprove a false proposition, but in fact, they do not prefer to use it. Textbooks contain some problems to prove equations, A=B. Proving those equations, however, students do not perceive that writing equation A=B, the conclusion of the proof, in the first line and deforming the both sides of it are incorrect. Furthermore, students prefer it to developing A to B. Most of constituents related to the meaning of proof are mentioned very simply or never in textbooks, so many students do not know them. Especially, they accept the result of experiments or measurements as proof and prefer them to logical proof stated in textbooks.

  • PDF