• Title/Summary/Keyword: geology unit

Search Result 176, Processing Time 0.021 seconds

The Study on the Confidence Building for Evaluation Methods of a Fracture System and Its Hydraulic Conductivity (단열체계 및 수리전도도의 해석신뢰도 향상을 위한 평가방법 연구)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.213-227
    • /
    • 2005
  • This study aims to assess the problems with investigation method and to suggest the complementary solutions by comparing the predicted data from surface investigation with the outcome data from underground cavern. In the study area, one(NE-1) of 6 fracture zones predicted during the surface investigation was only confirmed in underground caverns. Therefore, it is necessary to improve the confidence level for prediction. In this study, the fracture classification criteria was quantitatively suggested on the basis of the BHTV images of NE-1 fracture zone. The major orientation of background fractures in rock mass was changed at the depth of the storage cavern, the length and intensity were decreased. These characteristics result in the deviation of predieted predicted fracture properties and generate the investigation bias depending on the bore hole directions and investigated scales. The evaluation of hydraulic connectivity in the surface investigation stage needs to be analyze by the groundwater pressures and hydrochemical properties from the monitoring bore hole(s) equipped with a double completion or multi-packer system during the test bore hole is pumping or injecting. The hydraulic conductivities in geometric mean measured in the underground caverns are 2-3 times lower than those from the surface and furthermore the horizontal hydraulic conductivity in geometric mean is six times lower than the vertical one. To improve confidence level of the hydraulic conductivity, the orientation of test hole should be considered during the analysis of the hydraulic conductivity and the methodology of hydro-testing and interpretation should be based on the characteristics of rock mass and investigation purposes.

Geochemical Characteristics and Quaternary Environmental Change of Unconsolidated Sediments from the Seokgwan-dong Paleolithic Site in Seoul, Korea (서울 석관동 유적의 미고결 퇴적층의 지구화학적 특성 및 제4기 지표환경변화)

  • Lee, Hyo-Min;Lee, Jin-Young;Kim, Ju-Yong;Hong, Sei-Sun;Park, Jun-Bum
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.373-388
    • /
    • 2016
  • To understand human activity in the past, the information about past environmental change including geomorphological and climatic conditions is essential and this can be traced by using age dating and geochemical analysis of sediments from the prehistoric sites. The sedimentary sequence of Seokgwan-dong Paleolithic Site located in Seoul was 5m long unconsolidated sediments and consists of lower part bedrock weathering sediments, slope deposits and upper-part fluvial deposits. In this study, upper part sediments were used to reconstruct past environmental change through age dating and various physical and chemical analyses including grain size, magnetic susceptibility and mineral and elements. The fluvial sediments can be divided into 4 units including three organic layers. Grain size analysis results showed that the sediments were very poorly sorted with fining upward features. Magnetic susceptibility was relatively high in the organic layers, indicating environmental changes causing mineral composition change at that times. The mineral and major element composition are similar to Jurassic biotite granite which mainly consists of quartz, K-feldspar, biotite and muscovite. The radiocarbon age of $14,240{\pm}80yr$ BP was obtained from the lower most organic layer of Unit III(O), suggesting that the fluvial sediments formed at least from the early stage of deglacial period after the end of Last Glacial Maximum. Subsequent wet and warm climates and resultant fluvial process including slope sedimentation during the Holocene may have been responsible for the sedimentary sequence in Seokgwan-dong paleolithic site and surrounding area. The observed organic layers suggests frequent wetland occurrence combined with natural levee changes in this area.

Aeromagnetic Characteristics of the Samryangjin Caldera Area (삼량진 칼데라 지역의 항공자력특성 연구)

  • Koo Sung-Bon;Lee Tai-Sup;Park Yeong-Sue
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.101-109
    • /
    • 1998
  • Using airborne magnetic data, magnetic characteristics were studied at the Samryangjin caldera area developed in the volcanics of the Yuchon sub-basin, the south eastern part of the Gyeongsang basin. Residual magnetics, reduction to the pole, horizontal derivative, and vertical derivative maps are prepared. Using these maps, the magnetic lithofaces are zoned and the geological structures such as caldera and faults were qualitatively interpreted. In addition, the two quantitative interpretations were performed. Firstly, the forward modelling were done to the 14.5 line km crossing the caldera area to the northeast-southwest direction. Applying the 3-D Euler deconvolution method to the whole study area, the depth extent and the characteristics of the magnetic anomalous bodies were studied. According to the results, the magnetic lithofaces of the area are zoned by 4 units. In general, these are well matched with the geological distributions. But the biotite granites intruded in the northern boundary of the Samryangjin caldera show the high magnetic intensity, while the biotite granites of the other areas show the low magnetic intensity and the different magnetic lithofaces. Thus, we interpreted that the biotite granites are closely related with the volcanic activity of the Samryngjin caldera, and are intruded in the fracture zones developed along the caldera rim. The Samryangjin caldera and fault structures of the area can be easily recognized by the distinct magnetic structures from the various magnetic anomaly maps. Also the topographic characteristics well reflect these structures. The results of the forward modelling show that the magnetic basement depth of the Gyeongsang sedimentary basin is on the average about 6 km and in maximum 10 km. And the depth becomes shallower toward the caldera boundary due to the shallow intrusion of the volcanics. The results of the 3-D Euler method also show the caldera and fault structures. And the relatively shallow magnetic anomalous bodies which are related with the volcanics are generally developed to the east-west and northeast directions, while the deep magnetic anomalous bodies to the northwest direction.

  • PDF

Paleomagnetic Study of the Proterozoic and Mesozoic Rocks in the Kyeonggi Massif (경기육괴에 분포하는 원생대 및 중생대 암석에 대한 고지자기 연구)

  • 석동우;도성재;김완수
    • Economic and Environmental Geology
    • /
    • v.37 no.4
    • /
    • pp.413-424
    • /
    • 2004
  • A paleomagnetic investigation of the Mesozoic Daedong Supergroup and the Precambrian Seosan Group in the Kyeonggi massif is carried out to elucidate the tectonic evolution of Korea under the effect of the collision between Korea and the North/South China Blocks. For the Daedong Supergroup, the characteristic direction of D/I=74.5$^{\circ}$/36.7$^{\circ}$(k=60.7, $\alpha$=5.1$^{\circ}$) after tilt correction is better clustered than that before tilt correction (D/I=61.9$^{\circ}$/52.8$^{\circ}$, k=4.4,$$\alpha$_{95}$=21.5$^{\circ}$), indi-cating that it is a primary magnetization acquired during the formation of the rock. Paleomagnetic pole position of the formation locates at 208.0$^{\circ}$E, 24.5$^{\circ}$N (n=14, K=67.5, $A_{95}$=4.9$^{\circ}$), statistically similar to those of Middle Triassic period of the SCB, revealing that the two had occupied the same tectonic unit during this period. It is observed that only 6 out of 33 sites of the Seosan Group yield remagnetized paleomagnetic direction. The rest of the sampling sites reveals severe dispersion of magnetic directions presumably due to the consequences of the collision between Korea and the North/South China Blocks. The characteristic direction of the Seosan Group is D/I=45.7$^{\circ}$/60.1$^{\circ}$(k=41.2,$$\alpha$_{95}$=10.6$^{\circ}$) and the corresponding pole is at 195.0$^{\circ}$E, 51.6$^{\circ}$N (n=6, K=20.8, $A_{95}$=12.4$^{\circ}$). Although the pole position is close to those of Jurassic period of the Kyeonggi massif and Early Cretaceous of the Kyeongsang basin. it is interpreted that the Seosan Group was remagnetized by the influence of the emplacement of the Jurassic Daebo Granite after or at the closing stage of the orogenic episode rather than under the direct effect of deformation and/or metamorphism caused by the collision.

Numerical Simulation for Evaluation the Feasibility of Using Sand and Gravel Contaminated by Heavy Metals for Dam Embankment Materials (중금속으로 오염된 사력재의 댐축조 재료 활용 가능성 평가를 위한 수치 모델링)

  • Suk, Hee-Jun;Seo, Min-Woo;Kim, Hyoung-Soo;Lee, Jeong-Min
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.209-221
    • /
    • 2007
  • Numerical analysis was performed to investigate the effect of heavy metal contamination on neighboring environment in case a dam is constructed by using rockfill materials contaminated by heavy metals. The numerical simulation carried out in this research includes both subsurface flow and contaminant transport in the inside of the CFRD(Concrete Faced Rockfill Dam), using two commercial programs, SEEP2D and FEMWATER. The three representative cases of scenarios were chosen to consider a variety of cases occurring in a dam site; (1) Scenario 1 : no crack in the concrete face slab, (2) Scenario 2 : a crack In the upper part of face slab, and (3) Scenario 3 : a crack between plinth and face slab in the lower part of face slab. As a result of seepage analysis, the amount of seepage in scenario 2 was calculated as $14.31\sim14.924m^3/day$ per unit width, corresponding to the 1,000 times higher value than that in other scenarios. Also, in the simulation of contaminant transport by using FEMWATER, specified contaminant concentration of 13 ppb in main rockfill zone was set to consider continuous leakage from the rock materials. Through the analysis of contaminant transport, we found that elapsed times to take for the contaminant concentration of about 2 ppb to arrive at the end of a dam are as follows. Scenario 1 has the elapsed time of 55,000 years. In Scenario 2. it is 50 years. Finally, scenario 3 has 27,000 years. The rapid transport of the contaminant in scenario 2 was attributed to greater seepage flow by 500 times than other scenarios. Although, in case of upper crack in the face slab, it was identified that the contaminant might transport to the end of a dam within 100 years with about 2 ppb concentration, however, it happened that the contaminant was hardly transported out of the dam in other scenarios, which correspond to either no crack or a crack between plinth and face slab. In conclusion, the numerical analysis showed that the alternative usage of the contaminated sand and gravel as the dam embankment material can be one of the feasible methods with the assumption that the cracks in a face slab could be controlled adequately.

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.

Delineation of internal heterogeneities of Geum River point bar deposits in Buyeo area using GPR Data (지하 투과 레이다 조사를 통한 부여 지역 금강변의 충적 대수층 내부 불균질성 파악)

  • Rhee, Chul-Woo;Kim, Hyoung-Soo;Lee, Kyung-Joo
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.337-344
    • /
    • 2002
  • The alluvial deposits along meandering rivers can be used as an artificial aquifer for infiltration of river waters. Internal heterogeneity of the alluvial deposits is a prerequisite information for the development of alluvial groundwater because vortical and lateral movement of alluvial ground water depends on the internal heterogeneity The internal heterogeneity due to variations in channel behavior can be delineated using GPR survey, GPR profiles for the point bar deposits near Buyeo county reveals two different stratigraphic units: the lower inclined heterogeneous strata and the upper horizontally stratified strata. The upper unit is largely indicative of vertical accumulation by overbank floods within a floodplain, whereas the lower one represents typical point bar deposits formed by lateral accretion. The stratigraphic variation in the heterogeneity shows that GPR survey is a useful and necessary investigation method for the development of alluvial ground water.

  • PDF

Shallow Marine Seismic Refraction Data Acquisition and Interpretation Using digital Technique (디지털 技法을 이용한 淺海底 屈折法 彈性波 探査資料의 取得과 解析)

  • 이호영;김철민
    • 한국해양학회지
    • /
    • v.27 no.1
    • /
    • pp.19-34
    • /
    • 1992
  • Marine seismic refraction surveys have been carried out by Korea Institute of Geology, Mining and Materials(KIGAM) since 1984. The recording of refraction data was based on analog instrumentation. Therefore the resolution of refraction data was not good enough to distinguish many layers. The objective of the interpretation of seismic refraction data is the determination of intervals and critically refracted seismic wave propagation velocities through the layers beneath the sea floor. To determine intervals and velocities precisely, the resolution of refraction data should be enhanced. The intent of the study is to improve the quality of shallow marine refraction data by the digital technique using microcomputer- based acquisition and processing system. The system consists of an IBM AT microcomputer clone, an analog-digital(A/D) converter. A mass storage unit and a parallel processing board. The A/D converter has 12 bits of precision and 250 kHz of conversion rate. The magneto-optical disk drive is used for the mass storage of seismic refraction data. Shallow marine seismic refraction surveys have been carried out using the system at 6 locations off Ulsan and Pusan area. The refraction data were acquired by the radio sonobuoy. The refraction profiles have been produced by the laser printer with 300 dpi resolution after the basic computer processing. 5-9 layers were interpreted from digital refraction profiles, whereas 2-4 layers were interpreted from analog refraction profiles. the propagation velocities of sediments were interpreted as 1.6-2.1 km/sec. The propagation velocities of acoustic basement were interpreted as 2.4-2.7 km/sec off Ulsan area, 4.8 km/sec off Pusan area.

  • PDF

Na Borosilicate Glass Surface Structures: A Classical Molecular Dynamics Simulations Study (소듐붕규산염 유리의 표면 구조에 대한 분자 동역학 시뮬레이션 연구)

  • Kwon, Kideok D.;Criscenti, Louise J.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.119-127
    • /
    • 2013
  • Borosilicate glass dissolution is an important chemical process that impacts the glass durability as nuclear waste form that may be used for high-level radioactive waste disposal. Experiments reported that the glass dissolution rates are strongly dependent on the bulk composition. Because some relationship exists between glass composition and molecular-structure distribution (e.g., non-bridging oxygen content of $SiO_4$ unit and averaged coordination number of B), the composition-dependent dissolution rates are attributed to the bulk structural changes corresponding to the compositional variation. We examined Na borosilicate glass structures by performing classical molecular dynamics (MD) simulations for four different chemical compositions ($xNa_2O{\cdot}B_2O_3{\cdot}ySiO_2$). Our MD simulations demonstrate that glass surfaces have significantly different chemical compositions and structures from the bulk glasses. Because glass surfaces forming an interface with solution are most likely the first dissolution-reaction occurring areas, the current MD result simply that composition-dependent glass dissolution behaviors should be understood by surface structural change upon the chemical composition change.

Physical Geography of Munkyung (문경의 자연지리)

  • Bak, Byeong-Su;Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.15-30
    • /
    • 1998
  • Physical geography is the discipline which deals with the relationship between man and natural environment. Therefore, it should be studied as the organized unity. In this paper I recognize the drainage basin as a framework outlining physical geography, describe the difference of inhabitant's life style due to the difference of natural environment in the drainage basin, and consider the meaning of drainage basin as a unit of life(and unit of regional geography). Munkyung is divided into three regions(intermontane basin region, middle mountainous region, marginal hilly region of the great basin) owing to the topographic characteristics. Subdivision in these regions is related closely to drainage network distribution, specially in intermontane basin region. And small regions have developed with the confluence point of $3{\sim}4$ order streams as the central figure. Intermontane basin region is the valley floor of Sinbuk-Soya-Kauun-Nongam stream located in the limestone region which is exposed according to Munkyung fault at its northern part. Small streams are affected strongly by the influence of the NNE-SSE or WNW-ESE tectolineament. Thus Kaeripryungro(鷄立嶺路), Saejaegil(새재길), Ewharyungro(伊火嶺路) and so on are constructed through the tectolineament. In the valley floors of small streams which flow into the intermontane basin, there are large floodplains. Floodplain in Sinbuk, Joryung, and Yangsan stream is used to paddy field or orchard, and in Nongam stream is used to paddy field or vegetable field. Hills are distributed largely in the periphery of intermontane basin. Limestone hills in Kauun and Masung basin are not continuous to the present low and flat floodplain, and most of those are used to forest land and field. On the other side. granite hills in Koyori are continuous to be used to the present floodplain, and they are used to residential area and field. In the middle mountainous region are there hilly mountains constructed in the geology of Palaeozoic Pyeongan System in northern area and Chosun System's Limestone Series in southern area, and banded gneiss and schist among Sobaeksan Gneiss Complex. In Palaeozoic Pyeongan System region are there relatively rugged mountains and ingrown meanders developed along tectolineaments. Chosun System's Limestone Series region builds up a geomorphic surface, develops various karst landforms. Mountainous area is used to field. On the other hand, especially in case of Hogye, valley bottom is wide, long, and discontinuous to slope, is used to paddy field dominantly. And schist region in Youngnam Block of Pre-Cambrian is rugged mountainous. Marginal hilly region of the great basin is hilly zone located in the margin of erosional basin(Bonghwa-Youngju-Yechon-Hamchang-Sangju). This region is lower geomorphic surface which is consisted of hills of $50{\sim}100$m height. Hills are used to field or orchard, and dissected gentle depression is used to paddy field.

  • PDF