• 제목/요약/키워드: geological learning

검색결과 105건 처리시간 0.026초

Forecasting tunnel path geology using Gaussian process regression

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Abdulhamid, Sazan Nariman;Ali, Hunar Farid Hama;Ibrahim, Hawkar Hashim;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • 제28권4호
    • /
    • pp.359-374
    • /
    • 2022
  • Geology conditions are crucial in decision-making during the planning and design phase of a tunnel project. Estimation of the geology conditions of road tunnels is subject to significant uncertainties. In this work, the effectiveness of a novel regression method in estimating geological or geotechnical parameters of road tunnel projects was explored. This method, called Gaussian process regression (GPR), formulates the learning of the regressor within a Bayesian framework. The GPR model was trained with data of old tunnel projects. To verify its feasibility, the GPR technique was applied to a road tunnel to predict the state of three geological/geomechanical parameters of Rock Mass Rating (RMR), Rock Structure Rating (RSR) and Q-value. Finally, in order to validate the GPR approach, the forecasted results were compared to the field-observed results. From this comparison, it was concluded that, the GPR is presented very good predictions. The R-squared values between the predicted results of the GPR vs. field-observed results for the RMR, RSR and Q-value were obtained equal to 0.8581, 0.8148 and 0.8788, respectively.

Prediction models of rock quality designation during TBM tunnel construction using machine learning algorithms

  • Byeonghyun Hwang;Hangseok Choi;Kibeom Kwon;Young Jin Shin;Minkyu Kang
    • Geomechanics and Engineering
    • /
    • 제38권5호
    • /
    • pp.507-515
    • /
    • 2024
  • An accurate estimation of the geotechnical parameters in front of tunnel faces is crucial for the safe construction of underground infrastructure using tunnel boring machines (TBMs). This study was aimed at developing a data-driven model for predicting the rock quality designation (RQD) of the ground formation ahead of tunnel faces. The dataset used for the machine learning (ML) model comprises seven geological and mechanical features and 564 RQD values, obtained from an earth pressure balance (EPB) shield TBM tunneling project beneath the Han River in the Republic of Korea. Four ML algorithms were employed in developing the RQD prediction model: k-nearest neighbor (KNN), support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGB). The grid search and five-fold cross-validation techniques were applied to optimize the prediction performance of the developed model by identifying the optimal hyperparameter combinations. The prediction results revealed that the RF algorithm-based model exhibited superior performance, achieving a root mean square error of 7.38% and coefficient of determination of 0.81. In addition, the Shapley additive explanations (SHAP) approach was adopted to determine the most relevant features, thereby enhancing the interpretability and reliability of the developed model with the RF algorithm. It was concluded that the developed model can successfully predict the RQD of the ground formation ahead of tunnel faces, contributing to safe and efficient tunnel excavation.

분광분석과 기계학습기법을 활용한 조선누층군 타이타늄 함유 면산층 탐지 (Detection of Titanium bearing Myeonsan Formation in the Joseon Supergroup based on Spectral Analysis and Machine Learning Techniques)

  • 박찬혁;유재형;오민규;이길재;이기연
    • 자원환경지질
    • /
    • 제55권2호
    • /
    • pp.197-207
    • /
    • 2022
  • 본 연구는 조선누층군 내 타이타늄 광체의 모암이 되는 면산층 암석을 기계학습기법을 분광분석 결과에 적용하여 탐지하였다. 이를 위해 면산층과 타 층들의 구성 광물을 파악하고, 타이타늄 함량을 측정하였으며, 전자기파 반응 특성을 분석하였다. 면산층은 다른 층들에 비해 불투명 광물을 많이 함유하고, 석영 입자와 점토광물로 구성된다. X선 형광분석 결과, 면산층의 평균 타이타늄 함량은 타 층들에 비해 최소 10배 이상의 타이타늄 함량을 보이며 낮은 함량군과 높은 함량군의 다봉분포를 갖는다. 이는 면산층 내의 타이타늄이 함유되는 사질과 이질이 교호 반복되는데 사질 부분은 이질 부분보다 타이타늄의 함량이 상대적으로 높기 때문이다. 분광분석 결과, 면산층은 산화철의 흡광 특성이 근적외선 영역에서, 점토광물에 의한 흡광 특성이 단파적외선 영역에서 관찰되며, 풍화면의 경우 점토광물 특성이 보다 강해지는 경향을 보인다. 타이타늄 광화대의 탐지는 티탄철석 자체의 분광 특성이 특징적이지 않아 광체를 탐지의 대상으로 보기보다는 모암인 면산층을 탐지하는 것이 적절할 것으로 생각된다. 랜덤포레스트 기계학습 기법을 이용한 면산층의 탐지 정확도는 84%, 전체정확도 97%를 보였으며, 산화철의 분광 특성과 점토광물 분광 특성이 가장 중요한 역할을 하는 것으로 분석되었다. 이는 분광 특성이 타이타늄 모암인 면산층 암석을 효율적으로 탐지할 수 있음을 지시하고, 확대 적용 될경우 무인항공기반 타이타늄 광체 탐사에 적용할 수 있을 것으로 기대한다.

머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구 (A study on EPB shield TBM face pressure prediction using machine learning algorithms)

  • 권기범;최항석;오주영;김동구
    • 한국터널지하공간학회 논문집
    • /
    • 제24권2호
    • /
    • pp.217-230
    • /
    • 2022
  • 쉴드TBM (Tunnel Boring Machine) 터널 시공에 있어 막장압 관리는 막장면 붕괴, 지반침하 등을 방지하여 막장 안정성을 유지하는 데 중요한 역할을 담당한다. 특히, 챔버 내부의 굴착토로 막장압을 조절하는 토압식 쉴드TBM의 경우, 이수식 쉴드TBM에 비해 막장압의 관리가 어렵다. 본 연구에서는 국내 토압식 쉴드TBM 터널 시공 현장의 지반조건 및 굴진특성 데이터를 분석하여, 토압식 쉴드TBM 터널의 세그먼트 링별 막장압 예측모델을 제시하였다. 예측모델의 입력특성으로 7가지를 선정하였으며, 912개의 학습 데이터 세트(Training data set)와 228개의 시험 데이터 세트(Test data set)를 확보하였다. 최적의 토압식 쉴드TBM 막장압 예측모델 선정을 위하여 KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), XGB (eXtreme Gradient Boosting) 모델의 하이퍼파라미터(Hyperparameter)를 최적화하여 예측성능을 비교한 결과, RF 모델이 7.35 kPa의 평균 제곱근 오차(Root Mean Square Error, RMSE)로 가장 우수한 성능을 나타냈다. 추가적으로, RF 모델의 특성 중요도(Feature importance) 분석을 수행한 결과, 입력특성 중 수압의 영향도가 0.38로 가장 높았으며, 전반적으로 지반조건이 굴진특성보다 높은 중요도를 보여주었다.

서울 관악구 도심지역 미세먼지(PM10) 관측 값을 활용한 딥러닝 기반의 농도변동 예측 (Deep Learning-based Prediction of PM10 Fluctuation from Gwanak-gu Urban Area, Seoul, Korea)

  • 최한수;강명주;김용철;최한나
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권3호
    • /
    • pp.74-83
    • /
    • 2020
  • Since fine dust (PM10) has a significant influence on soil and groundwater composition during dry and wet deposition processes, it is of a vital importance to understand the fate and transport of aerosol in geological environments. Fine dust is formed after the chemical reaction of several precursors, typically observed in short intervals within a few hours. In this study, deep learning approach was applied to predict the fate of fine dust in an urban area. Deep learning training was performed by combining convolutional neural network (CNN) and recurrent neural network (RNN) techniques. The PM10 concentration after 1 hour was predicted based on three-hour data by setting SO2, CO, O3, NO2, and PM10 as training data. The obtained coefficient of determination value, R2, was 0.8973 between predicted and measured values for the entire concentration range of PM10, suggesting deep learning method can be developed into a reliable and viable tool for prediction of fine dust concentration.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.

충북 영동 지역의 과학학습장을 활용한 토포필리아 야외지질학습 프로그램 개발 (Development of a Program for Topophilia Geological Fieldwork Based on Science Field Study Area in Youngdong, Chungcheongbuk-do)

  • 윤마병;남기수;백제은;이종학;봉필훈;김유영
    • 대한지구과학교육학회지
    • /
    • 제10권1호
    • /
    • pp.76-89
    • /
    • 2017
  • 본 연구는 충북 영동군 지역의 금강과 화석산지, 다양한 지질구조를 교육자원으로 하여 과학학습장을 개발하고, 이를 활용하여 지구과학 학습과 토포 필리아를 함양할 수 있는 교육 프로그램을 구안하는 것이다. 영동 퇴적층(백악기)은 금강을 따라 신선한 노두가 잘 발달되어 있어서 다양한 지질구조와 식물화석, 공룡 발자국 화석을 쉽게 찾을 수 있고, 건열과 연흔, 사층리 등 뚜렷한 퇴적구조가 잘 나타난다. 교육과정과 교과서 분석, 전문가 패널의 협의를 통해 야외학습장(관찰지점 6곳)을 개발하여 융합교육 프로그램으로 구안했다. 개발 프로그램에 대한 내용타당도 검증 결과, 모든 검사 항목에서 양호했다($CVR{\geq}0.88$). 야외학습 모형에 따라 수업에 적용한 결과 수업 만족도는 매우 긍정적으로 평가되었다(4.18). 과학학습장에서 진행된 야외 수업과정을 관찰한 결과, 학생들은 금강의 아름다운 경관 이미지를 새롭게 형성하였으며 다양한 구체물(모래사장, 징검다리, 공룡 발자국 화석, 퇴적구조 등)에 대한 개념과 가치, 의미를 새롭게 인식하게 되면서 토포필리아를 갖게 되었다.

탄성파 속성 분석을 위한 탄성파 자료 무작위 잡음 제거 연구 (Study on the Seismic Random Noise Attenuation for the Seismic Attribute Analysis)

  • 원종필;신정균;하지호;전형구
    • 자원환경지질
    • /
    • 제57권1호
    • /
    • pp.51-71
    • /
    • 2024
  • 탄성파 탐사는 지하자원 개발, 지반 조사, 지층 모니터링 등에 널리 사용되고 있는 지구물리탐사 방법으로 정확한 지층 구조 영상을 제공해주기 때문에 지층의 지질학적 특성 해석에 필수적으로 활용된다. 일반적으로는 탄성파 구조 보정 영상을 시각적으로 분석하여 지질학적 특성을 해석하지만 최근에는 탄성파 구조 보정 자료에 대한 정량적인 분석을 통해 원하는 지질학적 특성을 정확하게 추출하고 해석하는 탄성파 속성 분석이 널리 연구되고 있다. 탄성파 속성 분석은 탄성파 자료에 기반한 지질학적 해석에 정량적인 근거를 제시해줄 수 있기 때문에 석유 및 가스 저류층 분석, 단층 및 균열대 조사, 지층 가스 분포 파악 등의 다양한 분야에서 활용되고 있다. 하지만 탄성파 속성 분석은 탄성파 자료 내 잡음에 취약하므로 속성 분석의 정확도 향상을 위해서는 중합 후 탄성파 자료에 대한 추가적인 잡음 제거가 수반되어야 한다. 본 연구에서는 중합 후 탄성파 자료에 대한 무작위 잡음 제거 및 및 탄성파 속성 분석 정확도 개선을 위해 4가지의 잡음 제거 방법을 적용하고 비교한다. FX 디콘볼루션, DSMF, Noise2Noiose, DnCNN을 각각 포항 영일만 고해상 탄성파 자료에 적용하여 탄성파 무작위 잡음을 제거하고 잡음이 제거된 탄성파 자료로부터 에너지, 스위트니스, 유사도 속성을 계산한다. 그리고 각 잡음 제거 방법의 특성, 잡음 제거 결과, 탄성파 속성 분석 결과를 정성적 및 정량적으로 분석한 후, 이를 기반으로 탄성파 속성 분석 결과 향상을 위한 최적의 잡음 제거 방법을 제안한다.

초등 사회 및 과학 교과서의 자연재해 내용 분석 (A Study of the Analysis about Natural Disaster in Elementary Society and Science Textbooks)

  • 김해경;문병찬;오강호
    • 한국환경교육학회지:환경교육
    • /
    • 제20권3호
    • /
    • pp.89-101
    • /
    • 2007
  • The purpose of this study was to analysis natural disasters which can be applied environmental education for elementary students. For this study, the elementary society and science textbooks were selected. The results of this study are as follows. the society textbooks contain 2 units of the natural disaster in the 4th and 5th grades. In the science textbooks, 5 units of the natural disaster were showed in 3rd, 5th and 6th grades. The learning quantities were 4 hours in society textbooks and 7 hours in science textbooks. In society textbooks, the contents relating meteorological disasters were dominance. But the science textbooks were showed both meteorological and geological disasters. In aims of learning, while the society textbooks were focused as damages, prevention, counter-plan and restoring plan of the natural disaster, the science textbooks were emphasized damages. the photos in society textbooks, meteorological disasters were superiority in number; especially the flood and heavy rain were 76%. In science textbooks, the photos about earthquake were prominent as 40%. For activating environmental education in elementary school based on these results, it can be suggested that the effects of natural damage as tsunami and global warming should add to elementary textbooks. And the elementary teachers need to understand contents and photos relating environment problem in the elementary textbooks.

  • PDF

Estimation of tunnel boring machine penetration rate: Application of long-short-term memory and meta-heuristic optimization algorithms

  • Mengran Xu;Arsalan Mahmoodzadeh;Abdelkader Mabrouk;Hawkar Hashim Ibrahim;Yasser Alashker;Adil Hussein Mohammed
    • Geomechanics and Engineering
    • /
    • 제39권1호
    • /
    • pp.27-41
    • /
    • 2024
  • Accurately estimating the performance of tunnel boring machines (TBMs) is crucial for mitigating the substantial financial risks and complexities associated with tunnel construction. Machine learning (ML) techniques have emerged as powerful tools for predicting non-linear time series data. In this research, six advanced meta-heuristic optimization algorithms based on long short-term memory (LSTM) networks were developed to predict TBM penetration rate (TBM-PR). The study utilized 1125 datasets, partitioned into 20% for testing, 70% for training, and 10% for validation, incorporating six key input parameters influencing TBM-PR. The performances of these LSTM-based models were rigorously compared using a suite of statistical evaluation metrics. The results underscored the profound impact of optimization algorithms on prediction accuracy. Among the models tested, the LSTM optimized by the particle swarm optimization (PSO) algorithm emerged as the most robust predictor of TBM-PR. Sensitivity analysis further revealed that the orientation of discontinuities, specifically the alpha angle (α), exerted the greatest influence on the model's predictions. This research is significant in that it addresses critical concerns of TBM manufacturers and operators, offering a reliable predictive tool adaptable to varying geological conditions.