• Title/Summary/Keyword: geological characterization

Search Result 86, Processing Time 0.026 seconds

An Electrical Resistivity Survey for the Characterization of Alluvial Layers at Groundwater Artificial Recharge Sites (지하수 인공함양 지역 충적층 특성 평가를 위한 전기비저항탐사)

  • Won, Byeongho;Shin, Jehyun;Hwang, Seho;Hamm, Se-Yeong
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.154-162
    • /
    • 2013
  • Vertical electrical sounding and 2D electrical resistivity survey were applied for evaluating the characteristics of alluvial layers at a groundwater artificial recharge site. The fine particles in alluvial layer, main target layer of groundwater artificial recharge, may cause clogging phenomena. In this case, electrical resistivity method is an effective technique to verify the spatial distribution of low-resistivity layers, such as saturated silts and clays. On the other hand, much attention should be paid to interpret the resistivity data in unconsolidated layers, because thick clayey overburden sometimes produces a masking effect on underlying interbedded resistive sands and gravels. Considering these points, we designed 35 points arranged in a grid form for vertical electrical sounding and 10 lines for 2D electrical resistivity survey, and concentrated our effort on enhancing the vertical and horizontal resolution of resistivity images. According to the results, 15 meters thick layers consisting of sands and gravels are located in 30 meters below ground. And the spatial distribution of silts and clays are mapped, which may cause clogging. Consequently, this approach can contribute to design and determine the location and depth of injection and observation wells for groundwater artificial recharge.

Seismic Site Classes According to Site Period by Predicting Spatial Geotechnical Layers in Hongseong (홍성 지역의 공간 지층정보 예측을 통한 부지주기 토대의 지진공학적 부지분류)

  • Sun, Chang-Guk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.32-49
    • /
    • 2010
  • Site characterization on geological and geotechnical conditions was performed for evaluating the earthquake ground motions associated with seismic site effects at a small urbanized area, Hongseong, where structural damages were recorded by an earthquake of magnitude 5.0 on October 7, 1978. In the field, various geotechnical site investigations composed of borehole drillings and seismic tests for obtaining shear wave velocity profile were carried out at 16 sites. Based on the geotechnical data from site investigation and additional collection in and near Hongseong, an expert system on geotechnical information was implemented with the spatial framework of GIS. For practical application of the GIS-based geotechnical information system to assess the earthquake motions in a small urban area, spatial seismic zoning maps on geotechnical parameters, such as the bedrock depth and the site period ($T_G$), were created over the entire administrative district of Hongseong town, and the spatial distributions of seismic vulnerability potentials were intuitively examined. Spatial zonation was also performed to determine site coefficients for seismic design by adopting a site classification system based on $T_G$. A case study of seismic zonation in the Hongseong area verified that the GIS-based site investigation was very useful for regional prediction of earthquake ground motions in a small urbanized inland area.

A Toolbox Approach for the Environmental Site Assessment of a Chemical Plant in a Coastal Area (연안지역 화학공장부지의 부지환경평가를 위한 복합조사기법의 적응)

  • Choi, Seung-Jin;Woo, Nam-Chil
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.419-443
    • /
    • 2007
  • Recently, the branch-out of foreign companies into domestic markets through M&A and the opened followed by the Free Trade Agreement(FTA) with America have made the environmental site assessments of specific site more necessary. In this study, through case study of conducting actual environmental site assessment by use of a toolbox approach at a large scale of chemical plant with various contaminants located in a coastal area, the problems of guideline of domestic environmental assessment of soil were complemented. And an efficient and economical assessment was achieved. All six steps such as basic investigation, environmental site history survey, sampling and analysis, installation of monitoring wells and hydrogeological survey, and data interpretation were conducted in this study. All results of document survey, geological lineament analysis, field geology survey of surrounding area, geophysical prospecting of the site, hydraulic conductivity, measurement of groundwater flow rate and direction, sampling and analysis at each step were associated and estimated as an integrated tool box approach. As a consequence of this study, toolbox approaches were very useful techniques for contamination level and site characterization of subsurface media. The given conditions to conduct a basic survey for domestic soil environment assessment of site by use of existing documents, as well as interviews with the owner/manager/user of all adjacent properties and thorough review of all practically reviewable records pertaining to the property and surrounding properties within "Guideline for Soil Environment Assessment" radii are very poor. As a result, the application of toolbox approach in the environment site assessment of site is not only more efficient and economical, but also could be very useful assessment to integrate the soil and groundwater contamination.

Field Tests and Analysis of Groundwater System for Stabilization of Slope in Large Open-Pit Coal Mine (대규모 노천 석탄광산의 사면 안정화를 위한 지하수 유동 체계 분석)

  • Ryu, D.W.;Kim, H.M.;Oh, J.H.;Sunwoo, C.;Jung, Y.B.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.248-260
    • /
    • 2009
  • With regard to oversea mineral resources development, recent trend has been changed from a simple capital investment to a direct development of the resources. In relation to the stability of a slope in large open-pit coal mine, groundwater system was investigated and the validity of horizontal drainage hole was evaluated in Pasir coal mine, Indonesia. In this work, various field tests were carried out for a characterization of groundwater system, which included in-situ permeability measurement, tracer test and monitoring of groundwater levels. Especially, the influence of SM river on the characteristics of the groundwater flow system was mainly inspected. For the permeability measurement, Guelph permeameter was employed, and was found that sandstone was more permeable than mudstone and coal seam. From a comparison of lithological structure and the results of groundwater level monitoring, sandstone and thin coal seam with fractures were found to be a main channel for groundwater flow. In the results of tracer tests, the effect of SM river on the groundwater system depends on the geological structure of its base. To identify the effect of horizontal drainage holes, 2-D groundwater modeling was performed. Four different cases were tested, which are different from the length of drainage hole and the existence of pond on top of the slope. To enhance the drainage effect and slope stability, the drainage hole should be drilled to the depth of coal seam layer, which provides a main pathway of groundwater flow and embedded by sandstone. For this purpose, correct identification of surrounding geology should be preceded.

Characterization of Physical Properties for Mineral Exploration of High-grade Limestone in Pungchon Formation (풍촌층 고품위 석회석 광상 탐사를 위한 암석 물성 특성)

  • Shin, Seung Wook;Park, Samgyu;Cho, Seoung-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.137-145
    • /
    • 2017
  • High-grade limestone applied to various chemical industries is abundant within upper Pungchon formation in Taebaeksan basin, South Korea. Geophysical exploration is one of the most efficient methods to investigate subsurface geological structure in an extensive area. Since the geophysical exploration for the high-grade limestone has rarely been conducted in Korea, its appropriate strategy has not been set up yet. In this study, we focused on to suggest the reasonable strategy and accumulate geophysical databases which are essential for interpreting geophysical images by characterizing laboratory physical properties of in-situ rocks. Hence, rocks were obtained from drilled cores consisting of lower Hwajeol formation, Pungchon formation, and dykes in Jeongseon area, Gangwon province. Geophysical laboratory experiments and petrography of the rocks were conducted. Since susceptibility values of the rocks in Pungchon Formation were obviously lower than those of upper Hwajeol and dykes, it is considered that the lithological boundaries could be distinguished by magnetic survey. In addition, electrical properties of the rocks in middle Pungchon formation were relatively different compared with those of upper/lower Pungchon formations. Thus, induced polarization is shown to be able to detect the high-grade limestone in upper Pungchon formation.

Characterization of Weathered Zone bearing Corestones through Scale Model Test (실내모형실험에 의한 핵석 풍화대 지반 특성 산정)

  • Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.435-443
    • /
    • 2007
  • This study shows the prediction of the engineering properties of weathered zone bearing corestones through the engineering geological surveys and the scale model test in the laboratory. The window survey and the observation on the borehole core were peformed on three natural slopes in corestones area in order to analyse the distribution pattern and the geometrical properties of corestones. Natural corestones were crushed and abrased for the scale model test into less than 5 mm in maximum-2mm in average by the scale reduction ratio based on the size of natural corestones and the specimen size. Scale model tests were carried out on soil and plaster model specimens with different corestone content ratio - 0%, 10%, 20%. The direct shear test on soils shows that shear strength is increased by the increase of corestone content ratio. The increase of cohesion is, however, more important factor to the shear strength of soil for 20% corestone content ratio due to interlocking of crushed corestone particles. The plaster model test shows a tendance of increase of UCS and modulus of elasticity with increase of corestone content. The variation ratio of specimen property by change of corestone content ratio in plaster model test was applied to in situ properties in order to estimate the properties of weathered zone bearing corestones. So it could be predicted that the increase of corestone content to 10% and to 20% produce about 18% and 30% UCS's increase respectively.

Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings (단열조사 및 물리검층을 통한 지표 하 단열특성 해석)

  • Chae, Byung-Gon;Lee, Dae-Ha;Kim, Yu-Sung;Hwang, Se-Ho;Kee, Weon-Seo;Kim, Won-Young;Lee, Seung-Gu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.37-56
    • /
    • 2001
  • As a preliminary study to establish fracture network model in crystalline rocks, detail investigation on fracture characteristics were performed. Five fracture sets were determined on the basis of regional survey of geological structures and fractures on outcrops. Among the fracture sets, S1 set has the highest density and longest trace length of fractures which was identified on surface in the study area. S4 and S5 sets are composed of foliations and foliation parallel shear joints of gneisses, which are very important sets at the aspect of weighting of fracture length. For characterization of subsurface fractures, detail core logging was performed to identify fractures and fracture zones from five boreholes. Acoustic televiewer logging and borehole geophysical loggings produced images, orientations and geophysical properties of fractures which intersect with boreholes. According to the result of the investigations, subsurface fractures can be grouped as three preferred orientations(B1, B2 and B3), which correspond to S1, S2 and S4/S5 of surface fracture sets, respectively. Actually, B1 set is expected to be intensely developed at subsurface. However, it has low frequency of intersection with boreholes due to its parallel or sub-parallel direction to boreholes. According to the inference of conductive fractures, B1 and B3 sets have possibilities of water flow and their intersection lines are also thought to consist of important conduits of groundwater flow. In particular, faults which are parallel to foliations control major groundwater flow in the study area.

  • PDF

Characterization of Physical Factor of Unsaturated Ground Deformation induced by Rainfall (강우를 고려한 불포화 지반변형의 영향인자 평가)

  • Kim, Man-Il;Jeon, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • Geophysical survey for establishing a wide site for the distribution of water content, wetting front infiltration due to the rainfall, and distribution of groundwater level has been performed by using 8round penetration radar (GPR) method, electrical resistivity method, and so on. On the other hand, a narrow area survey was performed to use a permittivity method such as time domain reflectometry, frequency domain reflectometry, and amplitude domain reflectometry methods for estimating volumetric water content, soil density, and concentration of contaminant in surface and subsurface. The permittivity methods establish more corrective physical parameters than different found survey technologies mentioned above. In this study for establishment of infiltration behaviors for wetting front in the unsaturated soil caused by an artificial rainfall, soil physical parameters for volumetric water content, pore water pressure, and pore air pressure were measured by FDR measurement device and pore water pressure meter which are installed in the unsaturated weathered granite soil with different depths. Consequently, the authors were proposed to a new establishment method for analyzing the variations of volumetric water content and wetting front infiltration from the responses of infiltrating pore water in the unsaturated soil.

Review of Microbially Mediated Smectite-illite Reaction (생지화학적 스멕타이트-일라이트 반응에 관한 고찰)

  • Kim, Jin-Wook
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.395-401
    • /
    • 2009
  • The smectite-illite (SI) reaction is a ubiquitous process in siliciclastic sedimentary environments. For the last 4 decades the importance of smectite to illite (S-I) reaction was described in research papers and reports, as the degree of the (S-I) reaction, termed "smectite illitization", is linked to the exploration of hydrocarbons, and geochemical/petrophysical indicators. The S-I transformation has been thought that the reaction, explained either by layer-by-layer mechanism in the solid state or dissolution/reprecipitation process, was entirely abiotic and to require burial, heat, and time to proceed, however few studies have taken into account the bacterial activity. Recent laboratory studies showed evidence suggesting that the structural ferric iron (Fe(III)) in clay minerals can be reduced by microbial activity and the role of microorganisms is to link organic matter oxidation to metal reduction, resulting in the S-I transformation. In abiotic systems, elevated temperatures are typically used in laboratory experiments to accelerate the smectite to illite reaction in order to compensate for a long geological time in nature. However, in biotic systems, bacteria may catalyze the reaction and elevated temperature or prolonged time may not be necessary. Despite the important role of microbe in S-I reaction, factors that control the reaction mechanism are not clearly addressed yet. This paper, therefore, overviews the current status of microbially mediated smectite-to-illite reaction studies and characterization techniques.

Change in Physical Properties depending on Contaminants and Introduction to Case Studies of Geophysical Surveys Applied to Contaminant Detection (오염원에 따른 오염지역 물성 변화 및 물리탐사 적용 사례 소개)

  • Yu, Huieun;Kim, Bitnarae;Song, Seo Young;Cho, Sung Oh;Caesary, Desy;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.132-148
    • /
    • 2019
  • Recently, safety and environmental concerns have become major social issues. Especially, a special underground-safety law has been made and enacted to prevent ground subsidence around construction sites. For environmental problems, several researches have started or will start on characterization of contaminated sites, in-situ environmental remediation in subsurface, and monitoring of remediation results. As a part of the researches, geophysical surveys, which have been mainly applied to explore mineral resources, geological features or ground, are used to characterize not only contaminated areas but also fluid flow paths in subsurface environments. As a basic study for the application of geophysical surveys to detect contamination in subsurface, this paper analyzes previous researches to understand changes in geophysical properties of contaminated zones by various contaminants such as leachate, heavy metals, and non-adequate phase liquid (NAPL). Furthermore, this paper briefly introduces how geophysical surveys like direct-current electrical resistivity, induced polarization and ground penetration radar surveys can be applied to detect each contamination, before analyzing case studies of the applications in contaminated areas by NAPL, leachate, heavy metal or nitrogen oxides.