• Title/Summary/Keyword: geological boundary

Search Result 144, Processing Time 0.022 seconds

The Role of Geological and Geomorphological Factors in the Delimitation of Maritime Boundaries (해양경계획정에서 지질 및 지형적 요소의 효과에 관한 고찰)

  • Yang, Hee-Cheol;Park, Seong-Wook;Jeong, Hyeon-Su;Yi, Hi-Il
    • Ocean and Polar Research
    • /
    • v.29 no.1
    • /
    • pp.55-67
    • /
    • 2007
  • A reference to natural prolongation appeared for the first time in the North Sea Judgement. Although it was not suggested that the concept of natural prolongation would automatically allow for the fixing of a continental shelf boundary, that concept encouraged States to request international tribunals to determine continental shelf boundaries on the basis of the geological and geomorphological features of the seabed. In the Libya v. Malta Case, however, the rejection of geological and geomorphological factors was total. Especially, Natural prolongation was the then checkmated as a relevant fact in delimitation between coasts situated less than 400 nm. apart. There can be no doubt that, in several disputed cases, prominent geomorphological variations are simply ignored ; nevertheless, there are also a few agreements where geological and geomorphological characteristics come into play and, to a certain extent, affect maritime boundaries. Physical characteristics of sea-bed are generally given serious consideration in the boundary delimitation such as the final negotiated boundary of the Australia-Indonesia Continental Shelf boundary Agreement(Timor and Arafura seas) which follows the continental slope bordering the Timor Trench.

The Development of Converting Program from Sealed Geological Model to Gmsh, COMSOL for Building Simulation Grid (시뮬레이션 격자구조 제작을 위한 Mesh 기반 지질솔리드모델의 Gmsh, COMSOL 변환 프로그램 개발)

  • Lee, Chang Won;Cho, Seong-Jun
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.80-90
    • /
    • 2017
  • To build tetrahedra mesh for FEM numerical analysis, Boundary Representation (B-Rep) model is required, which provides the efficient volume description of an object. In engineering, the parametric solid modeling method is used for building B-Rep model. However, a geological modeling generally adopts discrete modeling based on the triangulated surface, called a Sealed Geological Model, which defines geological domain by using geological interfaces such as horizons, faults, intrusives and modeling boundaries. Discrete B-Rep model is incompatible with mesh generation softwares in engineering because of discrepancies between discrete and parametric technique. In this research we have developed a converting program from Sealed Geological Model to Gmsh and COMSOL software. The developed program can convert complex geological model built by geomodeling software to user-friendly FEM software and it can be applied to geoscience simulation such as geothermal, mechanical rock simulation etc.

DEVELOPMENT OF GEOLGOCIAL SYMBOL MAPPING TOOL

  • Yeon, Young-Kwang;Han, Jong-Gyu;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.896-898
    • /
    • 2006
  • Geological symbols are used for describing geological information. But it's not ease to represent them in commercial GIS s/w, because of their complexity and diversity. This study aims at developing the geological symbol mapping tool for representing geological symbol on user's geological information. Geological symbol mapping too is a web application which can handle SHP format and map geological symbols based on user's requests. It manages geological symbols and mapping codes and symbols are mapped within the geological boundary according to the corresponding non-spatial field that is a mapping code. The system has functions to upload a user's GIS file, and download the converted image file which is mapped geological patterns. The system displays converted images to be check mapping results. Because the symbols are simple bitmap files, user(system manager) can design and apply them rapidly without considering specific commercial S/W. Thus, it is expected that this system plays an important role to disseminate geological standards such as geological symbols. And the results of this study can be used for developing global geological symbols and applying them easily

  • PDF

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

  • Manolis, G.D.;Makra, Konstantia;Dineva, Petia S.;Rangelov, Tsviatko V.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.161-205
    • /
    • 2013
  • We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.

Thermal Analysis of High Level Radioactive Waste Repository Using a Large Model

  • Park, Jeong-Hwa;Kuh, Jung-Eui;Sangki Kwon;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.244-253
    • /
    • 2000
  • A Simple Large Model (SLM), which can be used to make thermal calculation for a deep geological repository with finite number of HLW canisters, was developed. In order to develop the SLM, a Simple Basic Model (SBM), which will be a unit of the SLM, was optimized first. The SBM was optimized to achieve the same maximum buffer temperature as that of the Detailed Basic Model (DBM) representing the real geometric aspects of the repository. In contrast to the models with the assumption of infinite number of canisters which cannot consider boundary effect, the SLM can model the real repository with finite number of canisters and thus consider the boundary effect. Thermal results from the SLM can be used to evaluate the reliability of the models, which do not consider boundary effect. This model can also be used to simulate the thermal layout design and to analyze the thermal safety of a deep geological repository as well as an underground laboratory.

  • PDF

An Approach to Improve Romanian Geological Repository Planning

  • Andrei, Veronica;Prisecaru, Ilie
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.495-504
    • /
    • 2016
  • International standards recommend typical phases to be included within any national program for the development of a geological repository dedicated to disposal of the high level radioactive wastes generated in countries using nuclear power. However, these are not universally applicable and the content of each of these phases may need to be adapted for each national situation and regulatory and institutional framework. Several national geological repository programs have faced failures in schedules and have revised their programs to consider an adapted phased management approach. The authors have observed that in the case of those countries in the early phases of a geological repository program where boundary conditions have not been fully defined, international recommendations for handling delays/failures in the national program might not immediately help. This paper considers a case study of the influences of the national context risks on the current planning schedule of the Romanian national geological repository. It proposes an optimum solution for an integrated response to any significant adverse impact arising from these risks, enabling sustainable program planning.

Subsurface Geological Structure of the Southwestern Part of Ogcheon Zone by Gravity Survey (1) (중력탐사에 의한 옥천대 남서부의 지하지질구조(1))

  • Kim, Sung Kyun;Ahn, Kun Sang;Oh, Jinyong
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.363-369
    • /
    • 1997
  • As a part of the study to know the deep geological structure of the Ogcheon Zone. gravity survey is performed along the survey line of which direction is roughly perpendicular to major faults of the Zone. Recent studies for petrology. geochemistry. and structural geology in south-western Ogcheon Zone are outlined. Raw gravity data are corrected to obtain Bouguer anomalies and the anomalies are interpreted to obtain subsurface structures along the survey line. The subterranean density discontinuities determined from the power spectrum method are appeared at depths of 15.4 km and 2.8 km. It is considered that the depth of 15.4 km indicates the boundary between upper and lower crust. Probably the depth of 2.8 km represents the boundary between upper volcanic formations and granites. Alternatively. the observed Bouguer anomalies are interpreted in terms of lateral density variation model. Finally. the subterranean geological structure to satisfy the Bouguer anomalies is presented through the iterative forward method in which results obtained from surface geological informations and from the inverse method are adopted as an initial model.

  • PDF

Geotectonic Movements and Metal Ore Deposits in South Korea (남한(南韓)의 지구조운동(地構造運動)과 금속광상(金屬鑛床))

  • Shin, Byung Woo
    • Economic and Environmental Geology
    • /
    • v.7 no.1
    • /
    • pp.1-21
    • /
    • 1974
  • From the point of view of geological history, the land of South Korea is regarded as the subject of processes of the changes in formations of several geological blocks such as Kyonggi massif, Yeongnam massif, Taebaegsan basin, Kyungsang basin and so on. Through the long period of geological chronology, the present topography and geotectonics have been formed by the complicate interactions of epirogenetic movements, magmatism, orogenesis, differential vertical movements, metamorphism and sedimentation. The reason of the crust movements mentioned above, is suppossed that the Pacific and West Pacific plate have subducted directly or indirectly into the East Asia plate. This fact can be endorsed by the results of the studies on the heat flow, gravity anomaly, absolute age dating, tectonic lineation, lithofacies and the temperature of hot spring in South Korea. The formations of metal ore deposits as well as other geological processes can be determined by the mechanical control of the plates and be divided into several systematic patterns. The investigation of about 110 metal mines in South Korea shows the following results. (1) Plate boundary volcanic type is about 28% (2) Plate boundary plutonic type is about 44% (3) Intraplate sedimentary type is about 26% (4) Intraplate magmatic type is about 2%.

  • PDF

A Study on the Lineament Analysis Along Southwestern Boundary of Okcheon Zone Using the Remote Sensing and DEM Data (원격탐사자료와 수치표고모형을 이용한 옥천대 남서경계부의 선구조 분석 연구)

  • Kim, Won Kyun;Lee, Youn Soo;Won, Joong-Sun;Min, Kyung Duck;Lee, Younghoon
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.459-467
    • /
    • 1997
  • In order to examine the primary trends and characteristics of geological lineaments along the southwestern boundary of Okcheon zone, we carried out the analysis of geological lineament trends over six selected sub-areas using Landsat-5 TM images and digital elevation model. The trends of lineaments is determined by a minimum variance method, and the resulting geological lineament map can be obtained through generalized Hough transform. We have corrected look direction biases reduces the interpretability of remotely sensed image. An approach of histogram modification is also adopted to extract drainage pattern specifically in alluvial plains. The lineament extracting method adopted in this study is very effective to analyze geological lineaments, and that helps estimate geological trends associated various with the tectonic events. In six sub-areas, the general trends of lineaments are characterized NW, NNW, NS-NNE, and NE directions. NW trends in Cretaceous volcanic rocks and Jurassic granite areas may represent tension joints that developed by rejuvenated end of the Early Cretaceous left-lateral strike-slip motion along the Honam Shear Zone, while NE and NS-NNE trends correspond to fault directions which are parallel to the above Shear Zone. NE and NW trends in Granitic Gneiss are parallel to the direction of schitosity, and NS-NNE and NE trends are interpreted the lineation by compressive force which acted by right-lateral strike-slip fault from late Triassic to Jurassic. And in foliated Granite, NE and NNE trends are coincided with directions of ductile foliation and Honam Shear Zone, and NW-NNW trends may be interpreted direction of another compressional foliation (Triassic to Early Jurassic) or end of the Early Cretaceous tensional joints. We interpreted NS-NNE direction lineation is related with the rejuvenated Chugaryung Fault System.

  • PDF

Application of Self-Supported Diaphragm Wall Method Using Counterfort Technique (부벽식 기법을 사용한 자립식 지하연속벽 공법의 적용)

  • Jeong, Gyeong-Hwan;Jeong, Dong-Yeong;Park, Hun-Kook;Han, Kyoung-Tae;Ryu, Ji-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.775-782
    • /
    • 2004
  • Recently, the cases which are constructed close by neighboring structure or underground structure are on the increase to get the utmost out of the land exploitation of underground space in the downtown area. As the building becomes larger, the excavation depth is getting deep, and the excavation area is getting, wide too. These are frequent occasions that the application of Strut or Anchor method is difficult, because of site boundary, civil application and the ground condition. Therefore, to solve these problem, we analyze and compare design with measuring data, change the design factor and show the improvement of course through the application of self-supported diaphragm wall using counterfort technique which is a new method. It is expected to be a contribution to the suitable exploitation method of construction.

  • PDF