• Title/Summary/Keyword: geographic learning

Search Result 97, Processing Time 0.03 seconds

Predicting Crime Risky Area Using Machine Learning (머신러닝기반 범죄발생 위험지역 예측)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.64-80
    • /
    • 2018
  • In Korea, citizens can only know general information about crime. Thus it is difficult to know how much they are exposed to crime. If the police can predict the crime risky area, it will be possible to cope with the crime efficiently even though insufficient police and enforcement resources. However, there is no prediction system in Korea and the related researches are very much poor. From these backgrounds, the final goal of this study is to develop an automated crime prediction system. However, for the first step, we build a big data set which consists of local real crime information and urban physical or non-physical data. Then, we developed a crime prediction model through machine learning method. Finally, we assumed several possible scenarios and calculated the probability of crime and visualized the results in a map so as to increase the people's understanding. Among the factors affecting the crime occurrence revealed in previous and case studies, data was processed in the form of a big data for machine learning: real crime information, weather information (temperature, rainfall, wind speed, humidity, sunshine, insolation, snowfall, cloud cover) and local information (average building coverage, average floor area ratio, average building height, number of buildings, average appraised land value, average area of residential building, average number of ground floor). Among the supervised machine learning algorithms, the decision tree model, the random forest model, and the SVM model, which are known to be powerful and accurate in various fields were utilized to construct crime prevention model. As a result, decision tree model with the lowest RMSE was selected as an optimal prediction model. Based on this model, several scenarios were set for theft and violence cases which are the most frequent in the case city J, and the probability of crime was estimated by $250{\times}250m$ grid. As a result, we could find that the high crime risky area is occurring in three patterns in case city J. The probability of crime was divided into three classes and visualized in map by $250{\times}250m$ grid. Finally, we could develop a crime prediction model using machine learning algorithm and visualized the crime risky areas in a map which can recalculate the model and visualize the result simultaneously as time and urban conditions change.

Land Cover Classification Based on High Resolution KOMPSAT-3 Satellite Imagery Using Deep Neural Network Model (심층신경망 모델을 이용한 고해상도 KOMPSAT-3 위성영상 기반 토지피복분류)

  • MOON, Gab-Su;KIM, Kyoung-Seop;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.252-262
    • /
    • 2020
  • In Remote Sensing, a machine learning based SVM model is typically utilized for land cover classification. And study using neural network models is also being carried out continuously. But study using high-resolution imagery of KOMPSAT is insufficient. Therefore, the purpose of this study is to assess the accuracy of land cover classification by neural network models using high-resolution KOMPSAT-3 satellite imagery. After acquiring satellite imagery of coastal areas near Gyeongju City, training data were produced. And land cover was classified with the SVM, ANN and DNN models for the three items of water, vegetation and land. Then, the accuracy of the classification results was quantitatively assessed through error matrix: the result using DNN model showed the best with 92.0% accuracy. It is necessary to supplement the training data through future multi-temporal satellite imagery, and to carry out classifications for various items.

A Tool for Mapping and Measuring Sustainable Capacity Development: Concepts, Methods and Contexts (균형적 능력개발의 매핑 및 측정을 위한 도구 - 개념, 방법론 및 배경 -)

  • Liou, Jae-Ik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.165-175
    • /
    • 2006
  • The discussion about capacity development (CD) has been spotlighted as significant drivers for sustainable development in recent years. Multi-dimensional natures of capacities would lead to various definitions of CD in international institutes and organizations. CD is perceived as an endogeneous process to improve actionable learning and knowledge, but most of core capacities still remain abstract notion and might be unreliable in sustainable development (SD). The paper first explicates international perspectives of CD in association with SD. An agent-based model is especially proposed to portray more details of CD. It illuminates the role of assets (or capitals, resources) in agents to impact on ingredients of CDs that are drivers or enablers for improvement of SD. A definition of sustainable capacity development is firstly articulated in international society and its conceptual framework is also creatively designed to assist concerned international organizations. The paper concludes by proposing practical spatial asset mapping linking to agent-based organizational capacity as a tool for measuring sustainable capacity development.

  • PDF

Image Matching for Orthophotos by Using HRNet Model (HRNet 모델을 이용한 항공정사영상간 영상 매칭)

  • Seong, Seonkyeong;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.597-608
    • /
    • 2022
  • Remotely sensed data have been used in various fields, such as disasters, agriculture, urban planning, and the military. Recently, the demand for the multitemporal dataset with the high-spatial-resolution has increased. This manuscript proposed an automatic image matching algorithm using a deep learning technique to utilize a multitemporal remotely sensed dataset. The proposed deep learning model was based on High Resolution Net (HRNet), widely used in image segmentation. In this manuscript, denseblock was added to calculate the correlation map between images effectively and to increase learning efficiency. The training of the proposed model was performed using the multitemporal orthophotos of the National Geographic Information Institute (NGII). In order to evaluate the performance of image matching using a deep learning model, a comparative evaluation was performed. As a result of the experiment, the average horizontal error of the proposed algorithm based on 80% of the image matching rate was 3 pixels. At the same time, that of the Zero Normalized Cross-Correlation (ZNCC) was 25 pixels. In particular, it was confirmed that the proposed method is effective even in mountainous and farmland areas where the image changes according to vegetation growth. Therefore, it is expected that the proposed deep learning algorithm can perform relative image registration and image matching of a multitemporal remote sensed dataset.

Assessment of Busan City Central Area System and Service Area Using Machine Learning and Spatial Analysis (머신러닝과 공간분석을 활용한 부산시 중심지 체계 및 영향권 분석)

  • Ji Yoon CHOI;Minyeong PARK;Jung Eun KANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.3
    • /
    • pp.65-84
    • /
    • 2023
  • In order to establish a balanced development plan at the local government level, it is necessary to understand the current urban spatial structure. In particular, since the central area is a key element of balanced development, it is necessary to accurately identify its location and size. Therefore, the purpose of this study was to identify the central area system for Busan and to derive underprivileged areas that were alienated from the service areas where the functions of the central area could be used. To identify the central area system, four indicators(De facto Population, Land Price, Commercial Buildings, Credit Card Consumption) were used to calculate the central area index, and Getis-Ord Gi* and DBSCAN analysis were performed. Next, the hierarchy of the central areas were classified and the service areas were derived through network analysis by using it. As a result of the analysis, a total of 12 central areas were found in Seomyeon, Jungang, Yeonsan, Jangsan, Haeundae, Deokcheon, Dongnae, Daeyeon, Sasang, Pusan National University, Busan Station, and Sajik. Most of the underprivileged areas affected by the central area appeared in the Eastern area of Busan and the Western area of Busan, and were derived from old industrial areas, residential areas, and some new cities. Based on the results of the study, we can find three meanings. First, we have made a new attempt to apply a machine learning methodology that has not been covered in previous studies. Second, our data show the difference between the actual data and the existing planned central areas. Third, we not only found the location of the central areas, but also identified the underprivileged areas.

Base Location Prediction Algorithm of Serial Crimes based on the Spatio-Temporal Analysis (시공간 분석 기반 연쇄 범죄 거점 위치 예측 알고리즘)

  • Hong, Dong-Suk;Kim, Joung-Joon;Kang, Hong-Koo;Lee, Ki-Young;Seo, Jong-Soo;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.2
    • /
    • pp.63-79
    • /
    • 2008
  • With the recent development of advanced GIS and complex spatial analysis technologies, the more sophisticated technologies are being required to support the advanced knowledge for solving geographical or spatial problems in various decision support systems. In addition, necessity for research on scientific crime investigation and forensic science is increasing particularly at law enforcement agencies and investigation institutions for efficient investigation and the prevention of crimes. There are active researches on geographic profiling to predict the base location such as criminals' residence by analyzing the spatial patterns of serial crimes. However, as previous researches on geographic profiling use simply statistical methods for spatial pattern analysis and do not apply a variety of spatial and temporal analysis technologies on serial crimes, they have the low prediction accuracy. Therefore, this paper identifies the typology the spatio-temporal patterns of serial crimes according to spatial distribution of crime sites and temporal distribution on occurrence of crimes and proposes STA-BLP(Spatio-Temporal Analysis based Base Location Prediction) algorithm which predicts the base location of serial crimes more accurately based on the patterns. STA-BLP improves the prediction accuracy by considering of the anisotropic pattern of serial crimes committed by criminals who prefer specific directions on a crime trip and the learning effect of criminals through repeated movement along the same route. In addition, it can predict base location more accurately in the serial crimes from multiple bases with the local prediction for some crime sites included in a cluster and the global prediction for all crime sites. Through a variety of experiments, we proved the superiority of the STA-BLP by comparing it with previous algorithms in terms of prediction accuracy.

  • PDF

Optimization of Input Features for Vegetation Classification Based on Random Forest and Sentinel-2 Image (랜덤포레스트와 Sentinel-2를 이용한 식생 분류의 입력특성 최적화)

  • LEE, Seung-Min;JEONG, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.52-67
    • /
    • 2020
  • Recently, the Arctic has been exposed to snow-covered land due to melting permafrost every year, and the Korea Geographic Information Institute(NGII) provides polar spatial information service by establishing spatial information of the polar region. However, there is a lack of spatial information on vegetation sensitive to climate change. This research used a multi-temporal Sentinel-2 image to perform land cover classification of the Ny-Ålesund in Arctic Svalbard. In the pre-processing step, 10 bands and 6 vegetation spectral index were generated from multi-temporal Sentinel-2 images. In image-classification step is consisted of extracting the vegetation area through 8-class land cover classification and performing the vegetation species classification. The image classification algorithm used Random Forest to evaluate the accuracy and calculate feature importance through Out-Of-Bag(OOB). To identify the advantages of multi- temporary Sentinel-2 for vegetation classification, the overall accuracy was compared according to the number of images stacked and vegetation spectral index. Overall accuracy was 77% when using single-time Sentinel-2 images, but improved to 81% when using multi-time Sentinel-2 images. In addition, the overall accuracy improved to about 83% in learning when the vegetation index was used additionally. The most important spectral variables to distinguish between vegetation classes are located in the Red, Green, and short wave infrared-1(SWIR1). This research can be used as a basic study that optimizes input characteristics in performing the classification of vegetation in the polar regions.

Current and Future Status of GIS-based Landslide Susceptibility Mapping: A Literature Review

  • Lee, Saro
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.179-193
    • /
    • 2019
  • Landslides are one of the most damaging geological hazards worldwide, threating both humans and property. Hence, there have been many efforts to prevent landslides and mitigate the damage that they cause. Among such efforts, there have been many studies on mapping landslide susceptibility. Geographic information system (GIS)-based techniques have been developed and applied widely, and are now the main tools used to map landslide susceptibility. We reviewed the status of landslide susceptibility mapping using GIS by number of papers, year, study area, number of landslides, cause, and models applied, based on 776 articles over the last 20 years (1999-2018). The number of studies published annually increased rapidly over time. The total study area spanned 65 countries, and 47.7% of study areas were in China, India, South Korea, and Iran, where more than 500 landslides, 27.3% of all landslides, have occurred. Slope (97.6% of total articles) and geology (82.7% of total articles) were most often implicated as causes, and logistic regression (26.9% of total articles) and frequency ratio (24.7% of total article) models were the most widely used models. We analyzed trends in the causes of and models used to simulate landslides. The main causes were similar each year, but machine learning models have increased in popularity over time. In the future, more study areas should be investigated to improve the generalizability and accuracy of the results. Furthermore, more causes, especially those related to topography and soil, should be considered and more machine learning models should be applied. Finally, landslide hazard and risk maps should be studied in addition to landslide susceptibility maps.

Water consumption prediction based on machine learning methods and public data

  • Kesornsit, Witwisit;Sirisathitkul, Yaowarat
    • Advances in Computational Design
    • /
    • v.7 no.2
    • /
    • pp.113-128
    • /
    • 2022
  • Water consumption is strongly affected by numerous factors, such as population, climatic, geographic, and socio-economic factors. Therefore, the implementation of a reliable predictive model of water consumption pattern is challenging task. This study investigates the performance of predictive models based on multi-layer perceptron (MLP), multiple linear regression (MLR), and support vector regression (SVR). To understand the significant factors affecting water consumption, the stepwise regression (SW) procedure is used in MLR to obtain suitable variables. Then, this study also implements three predictive models based on these significant variables (e.g., SWMLR, SWMLP, and SWSVR). Annual data of water consumption in Thailand during 2006 - 2015 were compiled and categorized by provinces and distributors. By comparing the predictive performance of models with all variables, the results demonstrate that the MLP models outperformed the MLR and SVR models. As compared to the models with selected variables, the predictive capability of SWMLP was superior to SWMLR and SWSVR. Therefore, the SWMLP still provided satisfactory results with the minimum number of explanatory variables which in turn reduced the computation time and other resources required while performing the predictive task. It can be concluded that the MLP exhibited the best result and can be utilized as a reliable water demand predictive model for both of all variables and selected variables cases. These findings support important implications and serve as a feasible water consumption predictive model and can be used for water resources management to produce sufficient tap water to meet the demand in each province of Thailand.

Deep Learning-based Hyperspectral Image Classification with Application to Environmental Geographic Information Systems (딥러닝 기반의 초분광영상 분류를 사용한 환경공간정보시스템 활용)

  • Song, Ahram;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1061-1073
    • /
    • 2017
  • In this study, images were classified using convolutional neural network (CNN) - a deep learning technique - to investigate the feasibility of information production through a combination of artificial intelligence and spatial data. CNN determines kernel attributes based on a classification criterion and extracts information from feature maps to classify each pixel. In this study, a CNN network was constructed to classify materials with similar spectral characteristics and attribute information; this is difficult to achieve by conventional image processing techniques. A Compact Airborne Spectrographic Imager(CASI) and an Airborne Imaging Spectrometer for Application (AISA) were used on the following three study sites to test this method: Site 1, Site 2, and Site 3. Site 1 and Site 2 were agricultural lands covered in various crops,such as potato, onion, and rice. Site 3 included different buildings,such as single and joint residential facilities. Results indicated that the classification of crop species at Site 1 and Site 2 using this method yielded accuracies of 96% and 99%, respectively. At Site 3, the designation of buildings according to their purpose yielded an accuracy of 96%. Using a combination of existing land cover maps and spatial data, we propose a thematic environmental map that provides seasonal crop types and facilitates the creation of a land cover map.