• Title/Summary/Keyword: geographic learning

Search Result 97, Processing Time 0.024 seconds

The Introduction and Development of GIS Curriculum in the UK Geography Education (영국의 지리교육과정에서 GIS 커리큘럼의 도입과 개발에 관한 연구)

  • Kom, Young-Hoon
    • Journal of the Korean association of regional geographers
    • /
    • v.8 no.3
    • /
    • pp.380-395
    • /
    • 2002
  • Since the mid 1990s, in response to rapid changes in Geography subject. Geographic Information Systems (GIS) has been in central position in the UK geography curriculum. This paper discusses the roles of GIS for Geography subject curriculum and addresses main development within UK Geography curriculum since the 1990s, and investigates appropriate GIS curriculum that encourages teaching and learning of geography subject within the curriculum. To obtain these research purposes. this paper starts with the brief description of the Geography subject in the National Curriculum for England (1998) with the recent changes of Geography subject in the national exams (GSCE and A level) in the UK. This result represents a clear situation of Geography subject in the UK school education and also provides a new motivation that brings new challenges of information technology driven curriculum within the Geography subject. In turn, the interactive relationship of Geography and GIS within the current Geography curriculum is described by which the discussion of relevant GIS skills within Geography curriculum is followed. To propose the case studies that show the use of GIS for Geography education at school, Key Stages 2, 3, and 4 examples are discussed. Finally, this paper concludes with the issues that GIS benefits encourage geography teaching and learning and that potential applications can support not only the development of new teaching tools and learning strategies in geography education at schools, but also contribute to extend geographical skills and capabilities to collaborate with other subjects in school education in Korea.

  • PDF

Machine Learning based Optimal Location Modeling for Children's Smart Pedestrian Crosswalk: A Case Study of Changwon-si (머신러닝을 활용한 어린이 스마트 횡단보도 최적입지 선정 - 창원시 사례를 중심으로 -)

  • Lee, Suhyeon;Suh, Youngwon;Kim, Sein;Lee, Jaekyung;Yun, Wonjoo
    • Journal of KIBIM
    • /
    • v.12 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • Road traffic accidents (RTAs) are the leading cause of accidental death among children. RTA reduction is becoming an increasingly important social issue among children. Municipalities aim to resolve this issue by introducing "Smart Pedestrian Crosswalks" that help prevent traffic accidents near children's facilities. Nonetheless such facilities tend to be installed in relatively limited number of areas, such as the school zone. In order for budget allocation to be efficient and policy effects maximized, optimal location selection based on machine learning is needed. In this paper, we employ machine learning models to select the optimal locations for smart pedestrian crosswalks to reduce the RTAs of children. This study develops an optimal location index using variable importance measures. By using k-means clustering method, the authors classified the crosswalks into three types after the optimal location selection. This study has broadened the scope of research in relation to smart crosswalks and traffic safety. Also, the study serves as a unique contribution by integrating policy design decisions based on public and open data.

Development of Lesson Planning using Geographic Information System for High School Regional Geography Teaching and Its Application (GIS를 활용한 고등학교 지역지리 학습지도안의 개발과 적용)

  • Jung, In-Chul;Park, Hyun-Ji
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.1
    • /
    • pp.142-153
    • /
    • 2006
  • The purpose of this paper is to develop effective lesson planning and to describe what happened when GIS was integrated in the teaching and learning of regional geography in a highschool classroom. To achieve this, first, regional geography learning modules were designed using strands model. Second, six hour instructions were carried out. Third, students' reflections were analysed. Fourth, suggestions for the next implementation of GIS in regional learning are discussed. The results of the study are as follows. First, students showed interest in learning with GIS and they engaged actively in the teaching-learning process. Second, GIS was effective for enhancing students' achievement on concepts about GIS and mapping. Third, GIS promoted students' interest on regional learning. Fourth, students preferred collaborative GIS learning. Finally, GIS was not shown to be entirely effective in this case, due to the limited access to appropriate hardware and lack of time.

  • PDF

Selection of Optimal Band Combination for Machine Learning-based Water Body Extraction using SAR Satellite Images (SAR 위성 영상을 이용한 수계탐지의 최적 머신러닝 밴드 조합 연구)

  • Jeon, Hyungyun;Kim, Duk-jin;Kim, Junwoo;Vadivel, Suresh Krishnan Palanisamy;Kim, JaeEon;Kim, Taecin;Jeong, SeungHwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.120-131
    • /
    • 2020
  • Water body detection using remote sensing based on machine interpretation of satellite image is efficient for managing water resource, drought and flood monitoring. In this study, water body detection with SAR satellite image based on machine learning was performed. However, non water body area can be misclassified to water body because of shadow effect or objects that have similar scattering characteristic comparing to water body, such as roads. To decrease misclassifying, 8 combination of morphology open filtered band, DEM band, curvature band and Cosmo-SkyMed SAR satellite image band about Mokpo region were trained to semantic segmentation machine learning models, respectively. For 8 case of machine learning models, global accuracy that is final test result was computed. Furthermore, concordance rate between landcover data of Mokpo region was calculated. In conclusion, combination of SAR satellite image, morphology open filtered band, DEM band and curvature band showed best result in global accuracy and concordance rate with landcover data. In that case, global accuracy was 95.07% and concordance rate with landcover data was 89.93%.

Classification of Crop Cultivation Areas Using Active Learning and Temporal Contextual Information (능동 학습과 시간 문맥 정보를 이용한 작물 재배지역 분류)

  • KIM, Ye-Seul;YOO, Hee-Young;PARK, No-Wook;LEE, Kyung-Do
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.76-88
    • /
    • 2015
  • This paper presents a classification method based on the combination of active learning with temporal contextual information extracted from past land-cover maps for the classification of crop cultivation areas. Iterative classification based on active learning is designed to extract reliable training data and cultivation rules from past land-cover maps are quantified as temporal contextual information to be used for not only assignment of training data but also relaxation of spectral ambiguity. To evaluate the applicability of the classification method proposed in this paper, a case study with MODIS time-series vegetation index data sets and past cropland data layers(CDLs) is carried out for the classification of corn and soybean in Illinois state, USA. Iterative classification based on active learning could reduce misclassification both between corn and soybean and between other crops and non crops. The combination of temporal contextual information also reduced the over-estimation results in major crops and led to the best classification accuracy. Thus, these case study results confirm that the proposed classification method can be effectively applied for crop cultivation areas where it is not easy to collect the sufficient number of reliable training data.

Detection of Surface Water Bodies in Daegu Using Various Water Indices and Machine Learning Technique Based on the Landsat-8 Satellite Image (Landsat-8 위성영상 기반 수분지수 및 기계학습을 활용한 대구광역시의 지표수 탐지)

  • CHOUNG, Yun-Jae;KIM, Kyoung-Seop;PARK, In-Sun;CHUNG, Youn-In
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Detection of surface water features including river, wetland, reservoir from the satellite imagery can be utilized for sustainable management and survey of water resources. This research compared the water indices derived from the multispectral bands and the machine learning technique for detecting the surface water features from he Landsat-8 satellite image acquired in Daegu through the following steps. First, the NDWI(Normalized Difference Water Index) image and the MNDWI(Modified Normalized Difference Water Index) image were separately generated using the multispectral bands of the given Landsat-8 satellite image, and the two binary images were generated from these NDWI and MNDWI images, respectively. Then SVM(Support Vector Machine), the widely used machine learning techniques, were employed to generate the land cover image and the binary image was also generated from the generated land cover image. Finally the error matrices were used for measuring the accuracy of the three binary images for detecting the surface water features. The statistical results showed that the binary image generated from the MNDWI image(84%) had the relatively low accuracy than the binary image generated from the NDWI image(94%) and generated by SVM(96%). And some misclassification errors occurred in all three binary images where the land features were misclassified as the surface water features because of the shadow effects.

Forecasting COVID-19 confirmed cases in South Korea using Spatio-Temporal Graph Neural Networks

  • Ngoc, Kien Mai;Lee, Minho
    • International Journal of Contents
    • /
    • v.17 no.3
    • /
    • pp.1-14
    • /
    • 2021
  • Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, a lot of efforts have been made in the field of data science to help combat against this disease. Among them, forecasting the number of cases of infection is a crucial problem to predict the development of the pandemic. Many deep learning-based models can be applied to solve this type of time series problem. In this research, we would like to take a step forward to incorporate spatial data (geography) with time series data to forecast the cases of region-level infection simultaneously. Specifically, we model a single spatio-temporal graph, in which nodes represent the geographic regions, spatial edges represent the distance between each pair of regions, and temporal edges indicate the node features through time. We evaluate this approach in COVID-19 in a Korean dataset, and we show a decrease of approximately 10% in both RMSE and MAE, and a significant boost to the training speed compared to the baseline models. Moreover, the training efficiency allows this approach to be extended for a large-scale spatio-temporal dataset.

A study on the development of an automatic detection algorithm for trees suspected of being damaged by forest pests (산림병해충 피해의심목 자동탐지 알고리즘 개발 연구)

  • Hoo-Dong, LEE;Seong-Hee, LEE;Young-Jin, LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.151-162
    • /
    • 2022
  • Recently, the forests in Korea have accumulated damage due to continuous forest disasters, and the need for technologies to monitor forest managements is being issued. The size of the affected area is large terrain, technologies using drones, artificial intelligence, and big data are being studied. In this study, a standard dataset were conducted to develop an algorithm that automatically detects suspicious trees damaged by forest pests using deep learning and drones. Experiments using the YOLO model among object detection algorithm models, the YOLOv4-P7 model showed the highest recall rate of 69.69% and precision of 69.15%. It was confirmed that YOLOv4-P7 should be used as an automatic detection algorithm model for trees suspected of being damaged by forest pests, considering the detection target is an ortho-image with a large image size.

Detecting Greenhouses from the Planetscope Satellite Imagery Using the YOLO Algorithm (YOLO 알고리즘을 활용한 Planetscope 위성영상 기반 비닐하우스 탐지)

  • Seongsu KIM;Youn-In CHUNG;Yun-Jae CHOUNG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.27-39
    • /
    • 2023
  • Detecting greenhouses from the remote sensing datasets is useful in identifying the illegal agricultural facilities and predicting the agricultural output of the greenhouses. This research proposed a methodology for automatically detecting greenhouses from a given Planetscope satellite imagery acquired in the areas of Gimje City using the deep learning technique through a series of steps. First, multiple training images with a fixed size that contain the greenhouse features were generated from the five training Planetscope satellite imagery. Next, the YOLO(You Only Look Once) model was trained using the generated training images. Finally, the greenhouse features were detected from the input Planetscope satellite image. Statistical results showed that the 76.4% of the greenhouse features were detected from the input Planetscope satellite imagery by using the trained YOLO model. In future research, the high-resolution satellite imagery with a spatial resolution less than 1m should be used to detect more greenhouse features.

Development and Application of CCTV Priority Installation Index using Urban Spatial Big Data (도시공간빅데이터를 활용한 CCTV 우선설치지수 개발 및 시범적용)

  • Hye-Lim KIM;Tae-Heon MOON;Sun-Young HEO
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.19-33
    • /
    • 2024
  • CCTV for crime prevention is expanding; however, due to the absence of guidelines for determining installation locations, CCTV is being installed in locations unrelated to areas with frequent crime occurrences. In this study, we developed a CCTV Priority Installation Index and applied it in a case study area. The index consists of crime vulnerability and surveillance vulnerability indexes, calculated using machine learning algorithms to predict crime incident counts per grid and the proportion of unmonitored area per grid. We tested the index in a pilot area and found that utilizing the Viewshed function in CCTV visibility analysis resolved the problem of overestimating surveillance area. Furthermore, applying the index to determine CCTV installation locations effectively improved surveillance coverage. Therefore, the CCTV Priority Installation Index can be utilized as an effective decision-making tool for establishing smart and safe cities.